
Hardware virtualization
On Intel x86_64

Jan Dubský & Vít Kabele, MFF UK



HyPike

● The hypervisor for PikeOS
● Software project at MFF UK
● Included the development of own kernel
● Successfully finished

○ Able to run own kernel and PikeOS guests



Presentation roadmap

● Top to bottom
● We will go from the high-level abstractions
● via the required OS interfaces
● down to the hardware

More Other details in the NSWI150 course (Virtualizace a cloud computing)



Full virtualization

● Unmodified kernel in userspace
○ binary translation

● Hardware assisted virtualization

Paravirtualization

The guest is aware of being virtualized.

● Can take the advantage of this

Examples:

● Modified kernels running somehow
● Virtio
● HyperV



Requirements on the VM

● Should behave (almost) as standard process
● Can be preempted, resource limits applies properly
● Multiple VMs not a problem
● What happens in VM should stay in VM (x expensive context switches)
● Memory swapping
● Live migration
● Can be suspended and run again



VM startup/lifecycle



Guest machine boot

● Needs its own bootloader, as usual bootloaders expect BIOS
○ And BIOSes do nasty things with computers
○ Cache as RAM, RAM initialization etc.
○ All of this has to be properly emulated/or patched BIOS (SeaBIOS)

● VM can be also started in an arbitrary state
○ Long mode boot - Usually is not supported in vanilla distributions (without patches)

● Let’s do a compromise
○ Do the work of bootloader and pass the control to the kernel
○ For example we use the GNU multiboot2 specification.

■ Which is nice, but neither Linux nor BSDs supports it
■ Both Linux and BSD have its own boot protocols



Hypervisor vs. VMM (Virtual Machine Manager)

● Hypervisor is the bare metal virtualization 
controller

○ The kernel or its module
● VMM is the process controlling hypervisor

○ Userspace program (typically)
○ Commanding hypervisor via syscalls
○ Emulating features not implemented in the hypervisor

● VMM is responsible for what to do, hypervisor 
for how to do it

● Terminology varies



Hypervisor API

● Syscalls (KVM uses ioctls on /dev/kvm)
● VM state is associated with file descriptor
● Examples of calls:

○ Mapping physical memory
○ Run core
○ Injecting interrupts
○ Handling I/O port
○ Emulate unknown instructions



Intel VMX

● The CPU has to be switched to the VMX mode - needs VMXON area
● Each guest is represented by a VMCS - a single page in memory which 

stores:
○ Guest state
○ Host state
○ Virtualization control registry

● VMCS is read/written using VM* instructions
● VMCS can be active, current and inactive

○ Active - CPU can cache parts of the state - the in-memory representation doesn’t have to be 
up-to-date.

○ Current - All VM* instruction are related to this VMCS Implies Active.
○ Inactive - The in-memory state reflects the real state.



VM Entry

● VM is launched using VMLAUNCH instruction
● VM Entry verifies that both host and guest state are consistent, same as 

ensures that MV control registry values are correct
● In case of any errors causes a special VM Exit, which indicates VM entry fail
● Absence of any detailed reporting what went wrong



VM intercepts

● a.k.a. VMExit on Intel
● Selected instructions cause VMExits
● Different generations of CPUs supports different sets
● Root x non-root domain transitions
● Host OS is responsible for emulation of the instruction which caused the 

VMExit
● Formal requirements: Popek & Goldberg theorem



VM Exit

● Very similar to interrupt handler in a normal kernel
● Just one VM Exit handler for all VM Exits
● VM Exist are identified using VM Exit numbers
● Separate mechanism from interrupt delivery
● The handler has to store general purpose registry and then decide based in 

the VM Exit number which handler to call.
● Once the VM Exit is handled, the hypervisor returns to VM using VMRESUME 

instruction.



EPT

● Another level of page tables for virtualization - below the guests page tables
● Have very similar structure to page tables

○ Dirty bits, accessed bits
● Map so called guest-physical addressed to host-physical
● Guest-virtual address translates using guest page tables to guest-physical 

address (If guest uses paging). That address in then translated using EPT.
● EPT violation causes a VM exit, which allows the host kernel to emulate 

memory mapped accesses.
○ But the hypervisor has to decode the causing instruction
○ It’s fun to write an instruction parser ;)



I/O ports

● One of the first thing that the kernels try
● Legacy (likely?), slow (for sure) way of communication with peripherals
● String instructions
● Segment hell
● Otherwise nice semantics



MSR virtualization

● Hypervisor configures a MSR bitmap
○ guest accesses of masked MSRs cause a VM Exit.

● On top of that, VMX allows the hypervisor to configure which registers should 
be stored and loaded on VM Exit.

○ Possible, but slow!
○ VMX won’t store host MSRs on VM Entry - the hypervisor has to do so manually - that sucks

● Some MSRs are are stored directly in VMCS
○ Those which are frequently used
○ EFER, PAT etc.



Control registry virtualization & CPUID

● VMX enforces some control bits to be set - this also applies to guest
● The host has a possibility to hide the real CR state from the guest
● Some CR bits are not modified by VM Exit
● There is a bug which allows changing a hardcoded bit value

● CPUID causes a VM Exit
● Hypervisor emulates its behaviour

○ Even for example change of a MSR value
● Used to be used as serializing instruction for RDTSC, which is obviously not a 

good idea in virtualized environment



Preemption timer

● The easy way how to exit from VM after some time without involving external 
interrupt source.

● The only timer dedicated to virtualization only (and though not shared with the 
host OS)

● Ticks only in non-root domain
● Counts down to zero and then causes VM Exit
● The frequency is derived from the host TSC frequency
● What happens without invariant TSC?



Interrupt delivery

● VMX has very minimalistic interrupt delivery support
● The host can inject a single interrupt in every VM Entry
● Hypervisor is responsible for ensuring that host state allows interrupt delivery
● Hypervisor has to implement interrupt prioritization mechanism

○ The table in the manual is definitely not trivial
● VMX provides interrupt delivery window and NMI delivery window 

functionalities
○ Host states that it wants to gain control once an interrupt can be injected to the guest



External interrupt delivery

● Host has to emulate all external interrupt controllers
○ No hardware support except for general interrupt support

● Host has to emulate at least PIC and Local APIC
○ Local APIC has virtualization support in newest versions, but still requires implementation of 

an instruction parser.
● Interrupt delivery logic and prioritization must be implemented properly

○ Intel manual is sometimes very underspecified
● CPU support doesn’t care about external devices.

○ Must be emulated in the software
○ PIC, PIT, UART, RTC, Keyboard...



Questions



Thank you for attention

Jan Dubský & Vít Kabele, MFF UK


