
Live Patching

Miroslav Beneš
SUSE Labs, mbenes@suse.cz

2

Live (Kernel/User space) Patching

● What is it?
● Application of kernel patches without stopping/rebooting the system
● Similarly applies to the user space

● Why?
● Convenience/Cost – Huge cost of downtime, hard to schedule
● Availability
● Compliance

● Clear goal – reduce planned or unplanned downtime

3

Barcelona Supercomputing Center

● 165k Skylake
cores

● Terabytes of data

● Reboot?

© BSC

4

SAP HANA

● In-memory database and
analytics engine

● 4-16 TB of RAM

● All operations done in memory

● Disk used for journalling

● Active-Passive HA

● Failover measured in seconds

● Reboot?

© HP

HP DL980 w/ 12 TB RAM

5

Goals and Principles

● Applying limited scope fixes to the Linux kernel
● Security, stability and corruption fixes

● Require minimal changes to the source code
● Limited changes outside of the infrastructure itself

● Have no runtime performance impact
● Full speed of execution

● No interruption of applications while patching
● Full speed of execution

● Allow full review of patch source code
● For accountability and security purposes

6

History

● Windows HotPatching (2003 – Microsoft)
● Stops kernel execution for activeness check (busy loop)
● A function redirection using a short jump before a function prologue

● Ksplice (2008 – MIT, Oracle)
● First to patch the Linux kernel
● Stops kernel execution for activeness check

● Restarts and tries again later when active
● Uses jumps patched into functions for redirection

● kpatch (2014 – RedHat)
● Similar to Ksplice
● Binary patching

● kGraft (2014 – SUSE)
● Immediate patching with lazy migration
● Per-thread consistency model

7

Kernel Live Patching in Linux Upstream

● Result of a discussion between Red Hat and SUSE at Linux
Plumbers Conference 2014 in Dusseldorf

● Basic infrastructure
● Neither kGraft, nor kpatch
● Patch format abstraction and function redirection based on ftrace
● x86_64, s390x and powerpc architectures supported

● arm64 in development

● Merged to 4.0 in 2015

8

Call Redirection

● x86_64 from now on
● Although s390x, powerpc and arm64 are similar

● Use of ftrace framework
● gcc -pg is used to generate calls to _fentry_() at the beginning of

every function
● ftrace replaces each of these calls with NOP during boot, removing runtime

overhead (when CONFIG_DYNAMIC_FTRACE is set)
● When a tracer registers with ftrace, the NOP is runtime patched to a CALL

again
● livepatch uses a tracer, too, but then asks ftrace to change the return

address to the new function
● And that's it, call is redirected

9

Call Redirection

10

Simple Sample

static int cmdline_proc_show(struct seq_file *m, void *v)

{

 seq_printf(m, "%s\n", saved_command_line);

 return 0;

}

11

Call Redirection

<cmdline_proc_show>:

e8 4b 68 39 00 callq ffffffff8160d8d0 <__fentry__>

48 8b 15 7c 3f ef 00 mov 0xef3f7c(%rip),%rdx # <saved_command_line>

31 c0 xor %eax,%eax

48 c7 c6 a3 d7 a4 81 mov $0xffffffff81a4d7a3,%rsi

e8 e6 1d fb ff callq ffffffff81228e80 <seq_printf>

31 c0 xor %eax,%eax

c3 retq

0f 1f 00 nopl (%rax)

12

Call Redirection

<cmdline_proc_show>:

e8 4b 68 39 00 callq ffffffff8160d8d0 <__fentry__>

48 8b 15 7c 3f ef 00 mov 0xef3f7c(%rip),%rdx # <saved_command_line>

31 c0 xor %eax,%eax

48 c7 c6 a3 d7 a4 81 mov $0xffffffff81a4d7a3,%rsi

e8 e6 1d fb ff callq ffffffff81228e80 <seq_printf>

31 c0 xor %eax,%eax

c3 retq

0f 1f 00 nopl (%rax)

<cmdline_proc_show>:

0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

48 8b 15 7c 3f ef 00 mov 0xef3f7c(%rip),%rdx # <saved_command_line>

13

Call Redirection

<cmdline_proc_show>:

e8 4b 68 39 00 callq ffffffff8160d8d0 <__fentry__>

48 8b 15 7c 3f ef 00 mov 0xef3f7c(%rip),%rdx # <saved_command_line>

31 c0 xor %eax,%eax

48 c7 c6 a3 d7 a4 81 mov $0xffffffff81a4d7a3,%rsi

e8 e6 1d fb ff callq ffffffff81228e80 <seq_printf>

31 c0 xor %eax,%eax

c3 retq

0f 1f 00 nopl (%rax)

<cmdline_proc_show>:

0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

48 8b 15 7c 3f ef 00 mov 0xef3f7c(%rip),%rdx # <saved_command_line>

<cmdline_proc_show>:

e8 7b 3f e5 1e callq 0xffffffffa00cb000 # ftrace handler

48 8b 15 7c 3f ef 00 mov 0xef3f7c(%rip),%rdx # <saved_command_line>

14

Call Redirection

15

static int livepatch_cmdline_proc_show(struct seq_file *m, void *v)

{

 seq_printf(m, "%s\n", "this has been live patched");

 return 0;

}

static struct klp_func funcs[] = {

 {

 .old_name = "cmdline_proc_show",

 .new_func = livepatch_cmdline_proc_show,

 }, { }

};

static struct klp_object objs[] = {

 { /* name being NULL means vmlinux */

 .funcs = funcs, },

 { }

};

static struct klp_patch patch = { .mod = THIS_MODULE, .objs = objs, };

static int livepatch_init(void)

{

 return klp_enable_patch(&patch);

}

static void livepatch_exit(void) { }

module_init(livepatch_init);

module_exit(livepatch_exit);

MODULE_LICENSE("GPL");

MODULE_INFO(livepatch, "Y");

16

Patch Generation – Semi-automatic Approach

● Patches were originally created entirely by hand
● Create a list of functions to be replaced
● Copy the source code, fix it
● Code closure to make it compile
● Call livepatch: klp_enable_patch()
● Compile, insert as .ko module, done

● The source of the patch is then a single C file
● Easy to review, easy to maintain in a VCS like git

● klp-ccp
● https://github.com/SUSE/klp-ccp
● Prepares a C file almost automatically

https://github.com/SUSE/klp-ccp

17

Call Redirection – The Final Hurdle

● Changing a single function is easy
● Since ftrace patches at runtime, you just flip the switch

● What if a patch contains multiple functions that depend on each
other?
● Number of arguments changes
● Types of arguments change
● Return type change
● Or semantics change

● We need a consistency model

18

kGraft Consistency Model

● Avoid calling a new function from old and vice versa
● Make sure a thread calls either all old functions or all new
● Migrate them one by one to 'new' as they enter/exit execution
● No stopping for anybody

19

kGraft Consistency Model

20

kGraft Consistency Model

● Per-thread flag
● TIF_KGR_IN_PROGRESS

● Mark all tasks in a system at the beginning and wait for them to be
migrated to a new universe

● Finalize

21

kGraft Consistency Model

● How about eternal sleepers?
● Like getty on a console 10
● They'll never exit the kernel
● They'll never be migrated to 'new'
● They'll block completion of the patching process forever

● Wake them up!
● Sending a fake signal (SIGPENDING flag, but no signal in a queue)
● The signal exits the syscall and transparently restarts it

● And kthreads?
● They cannot exit the kernel ever
● Annotate them in a safe place and wake them up

22

kpatch Consistency Model

● First stop_kernel();
● That stops all CPUs completely, including all applications

● Then, check all stacks, whether any thread is stopped within a
patched function

● If yes, resume kernel and try again later
● And hope it'll be better next time

● If not, flip the switch on all functions and resume the kernel
● The system may be stopped for 10-40ms typical

23

Livepatch Hybrid Consistency Model

● Hybrid of kGraft and kpatch consistency models
● Based on a stack checking
● Heated discussion when proposed

● Stacks and their dumps are unreliable
● Josh Poimboeuf then proposed objtool

● It analyzes every .o file and ensures the validity of its stack metadata (frame
pointer usage at the time of proposal)

● The second proposal sidetracked as well
● Josh rewrote the kernel stack unwinder

● Merged to 4.12
● The pure kGraft is not present in any supported code stream of SUSE Linux

Enterprise Server

24

Livepatch Hybrid Consistency Model

● Per-thread migration, but scope limited to a set of patched
functions

● What entity the execution must be outside of to be able to make the
switch
● LEAVE_{FUNCTION, PATCHED_SET, KERNEL}

● What entity the switch happens for
● SWITCH_{FUNCTION, THREAD, KERNEL}

● kGraft is LEAVE_KERNEL and SWITCH_THREAD
● kpatch is LEAVE_PATCHED_SET and SWITCH_KERNEL
● Hybrid consistency model is LEAVE_PATCHED_SET and

SWITCH_THREAD
● Reliable, fast-converging, no annotation of kernel threads, no failure with

frequent sleepers

25

Livepatch Hybrid Consistency Model

● Stack checking
● To ensure that a task does not sleep in a to-be-patched function (set of to-be-

patched functions)
● Per-thread flag

● Similar to kGraft
● Threads are still migrated on the user space/kernel space boundary

● Allows for faster migration to a new universe

26

Livepatch Hybrid Consistency Model

● Slightly different consistency model leads to slight differences
during a live patch development
● Threads are switched earlier (when they leave patched set)
● It could matter in case of complex caller–callee changes

● Eternal sleepers
● Not a problem as long as they do not sleep in a patched function (set of

patched functions)
● We have the fake signal for the rest

● Kthreads are the same

27

Livepatch Hybrid Consistency Model

● Reliable stacks require frame pointers (FPs)
● There is a performance penalty with FPs enabled

● Plans to add Call Frame Information (CFI, DWARF) validation for C
files, CFI generation for assembly files and introduction of DWARF-
aware unwinder were not welcome

● ORC unwinder
● Tailored info generated by objtool
● Unwinder is simple – no complicated state machine

28

static void notrace klp_ftrace_handler(unsigned long ip, unsigned long parent_ip, struct
 ftrace_ops *fops, struct pt_regs *regs)

{

 struct klp_ops *ops;

 struct klp_func *func;

 int patch_state;

 ops = container_of(fops, struct klp_ops, fops);

 preempt_disable_notrace();

 func = list_first_or_null_rcu(&ops->func_stack, struct klp_func,

 stack_node);

 if (WARN_ON_ONCE(!func))

 goto unlock;

 smp_rmb();

 if (unlikely(func->transition)) {

 smp_rmb();

 patch_state = current->patch_state;

 WARN_ON_ONCE(patch_state == KLP_UNDEFINED);

 if (patch_state == KLP_UNPATCHED) {

 func = list_entry_rcu(func->stack_node.next,

 struct klp_func, stack_node);

 if (&func->stack_node == &ops->func_stack)

 goto unlock;

 }

 }

 if (func->nop)

 goto unlock;

 klp_arch_set_pc(regs, (unsigned long)func->new_func);

unlock:

 rcu_read_unlock();

}

29

Additional Features

● Callbacks
● klp_object (un)patching notification mechanism
● Modification of global data and registration of newly available

services/handlers

● Shadow variables
● Way to deal with data structure/semantics changes
● Associating a new field to the existing structure

● Selftests and samples

30

Atomic Replace

● Livepatch allows multiple patches on a (function) stack
● Maintenance nightmare if there is a dependency between patches

● Several different fixes of a function

● Cumulative patches and atomic replace
● All older patches removed after the transition
● Special nop functions which redirect to the original functions

31

Limitations and Missing Features

● Non-exported symbols
● kallsyms trick
● Relocations
● klp-convert

● Patch creation tool
● Currently semi-automatic, tools to help
● kpatch-build
● Source-based approach in upstream

32

Limitations and Missing Features

● GCC optimizations
● Inlining

● A bug propagation
● Interprocedural optimizations

● GCC to help
● -fdump-ipa-clones
● -flive-patching

33

Userspace Live Patching

● Libpulp
● https://github.com/SUSE/libpulp
● Library for live patching other user space libraries
● Ptrace-based

● Consistency model
● Similar to the original kGraft approach
● Per-thread
● Migration on the application-library boundary

● In development but definitely coming

● Youtube recording from SUSE Labs Conference 2020

https://github.com/SUSE/libpulp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

