
Microkernel-based and Capability-based
Operating Systems

Martin Děcký 
martin.decky@huawei.com 

March 2021



2Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

About the Speaker

Charles University

Research scientist at D3S (2008 – 2017)

Graduated (Ph.D.) in 2015

Co-author of the HelenOS (http://www.helenos.org/) microkernel 
multiserver operating system

Huawei Technologies

Senior Research Engineer, Munich Research Center (2017 – 2018)

Principal Research Engineer, Dresden Research Center (2019 – present)

http://www.helenos.org/


Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems 3

Ireland RC
Toronto

Ottawa

Japan RC

Sweden RC Finland RC

Belgium RC

HQ Shenzhen

Waterloo

Montreal
Vancouver

UK RC

Germany, Austria, Switzerland RCFrance RC

Italy RC

Edinburgh
Cambridge

Ipswich
London

Dublin
Paris

Lagrange
Grenoble

Nice

Leuven

Goteburg
Lund

Tampere
HelsinkiStockholm

Tel Aviv

Israel RC

Ukraine RC
Beijing

Chengdu

Hangzhou

Nanjing
Shanghai
SuzhouWuhan

Xi’an

City R&D Center

Related Country Research Center

City Research Center

Warsaw

Songshanhu

Poland RC

Zurich

Dresden
Nuremburg
Munich

Vienna

Kyiv

Pisa
Milan

Edmonton

India RC

Singapore RC



4Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Huawei Dresden Research Center (DRC)

Since 2019, ~20 employees (plus a virtualization team in Munich)



5Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Huawei Dresden Research Center (DRC) (2)

Focuses on R&D in the domain of operating systems

Microkernels, hypervisors

Collaboration with the OS Kernel Lab in Huawei HQ

Collaboration with TU Dresden, MPI-SWS, ETH Zürich and other institutions

Formal verification of correctness, weak memory architectures

Safety and security certification

Many-core scalability, heterogeneous hardware

Flexible OS architecture



6Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

We Are Hiring

Operating System Engineer / Researcher (Dresden)

https://apply.workable.com/huawei-16/j/3BAC3458E6/

Formal Verification Engineer / Researcher (Dresden)

https://apply.workable.com/huawei-16/j/95CCAD4EC5/

Virtualization Engineer / Researcher (Munich)

https://apply.workable.com/huawei-16/j/51F90678EA/

Industrial Ph.D. Student (Dresden)

In collaboration with TU Dresden

https://apply.workable.com/huawei-16/j/3BAC3458E6/
https://apply.workable.com/huawei-16/j/95CCAD4EC5/
https://apply.workable.com/huawei-16/j/51F90678EA/


7Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Systems Software Innovations Summit 2021

March 30th – 31st 2021

https://huawei-events.de/, on-line, no participation fee

https://huawei-events.de/


Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems 8

Microkernels



9Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Microkernel-based Operating Systems

Motivation

Safety, security, reliability, dependability

Proper software architecture

Formal verification of correctness

Modularity, customization

Virtualization, paravirtualization

Tasks and virtual machines are quite similar types of entities

Partitioning, support for mixed criticality



10Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Monolithic OS Design Is Flawed

Biggs S., Lee D., Heiser G.: The Jury Is In: Monolithic OS Design Is 
Flawed: Microkernel-based Designs Improve Security, ACM 9th Asia-
Pacific Workshop on Systems (APSys), 2018

“While intuitive, the benefits of the small TCB have not been quantified to 
date. We address this by a study of critical Linux CVEs, where we examine 
whether they would be prevented or mitigated by a microkernel-based 
design. We find that almost all exploits are at least mitigated to less than 
critical severity, and 40 % completely eliminated by an OS design based 
on a verified microkernel, such as seL4.”

https://dl.acm.org/doi/10.1145/3265723.3265733

https://dl.acm.org/doi/10.1145/3265723.3265733


11Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Some Data Points from History

Compatible Time-Sharing System (CTSS)

John McCarthy, MIT Computation Center, 1961

Probably one of the earliest “real” operating system
Not just a loader, jobs manager or batch manager

RC 4000 Multiprogramming System

Per Brinch Hansen, Regnecentralen, 1969

Separation of mechanism and policy, modularity via isolated concurrently running 
processes, message passing

Multics

MIT, General Electric, Bell Labs, 1969

Traceable influence on UNIX



12Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Some Data Points from History (2)

HYDRA

William Wulf, Carnegie Mellon University, 1971

Capability-based, object-oriented, separation of mechanism and policy

Probably the earliest peer-reviewed publication of the design principles

UNIX

Ken Thompson, Dennis Ritchie, Brian Kernighan et al., Bell Labs, 1973

Architecture and design traceable in many current monolithic systems

VMS

Digital Equipment, 1977

Architecture and design traceable in Microsoft Windows



13Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Some Data Points from History (3)

EUMEL / L2

Jochen Liedtke, University of Bielefeld, 1979

Proto-microkernel based on bitcode virtual machines

QNX

Gordon Bell, Dan Dodge, 1982

Earliest commercially successful microkernel multiserver OS
Still in active use and development today

CMU Mach

Richard Rashid, Avie Tevanian, Carnegie Mellon University, 1985

Arguably the most widespread microkernel code base
Still a core part of macOS, iOS and other OS clones by Apple today (but not in a microkernel configuration)
Despite its well-publicized shortcomings, it remains highly influential



14Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Microkernel-based Operating Systems

Definition

Operating system that follows specific design principles that, in effect, 
minimize the amount of code running in the privileged (kernel) mode

Hence the name

Every microkernel-based OS follows slightly different specific design 
principles

Two design principles are probably universally common
Minimality principle
Split of mechanism and policy principle



15Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Minimality Principle

The obvious criterion

The kernel needs to implement the functionality than cannot be possibly 
implemented in user space

On typical commodity hardware, this includes
Bootstrapping
Fundamental part of hardware exception and interrupt handling
Configuration of certain control registers (possibly including MMU)
Fundamental part of mode switching (e.g. related to hardware virtualization, 
trusted execution environments, etc.)



16Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Minimality Principle (2)

The necessary criterion

The kernel needs to implement the functionality than cannot be 
delegated only to a trusted user space component without also 
delegating it to any untrusted user space component (thus undermining 
the fundamental guarantees that the operating system provides)

On typical commodity hardware, this includes
Configuration of the forced preemption mechanism (e.g. timer interrupt 
routing)
Fundamental part of interacting with a hypervisor, firmware and some hardware 
components

– Hardware components are tricky: Without IOMMU, almost any interaction
with hardware might potentially undermine the OS guarantees



17Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Minimality Principle (3)

The practicality criterion

The kernel might also implement the functionality that would be 
unpractical (while still technically possible) to be safely delegated to user 
space

This is where microkernels differ, but there are still some universal examples
Context switching
Basic scheduling
System timer configuration
Observability and (optional) debugging support



18Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Split of Mechanism and Policy Principle

Orthogonal to the minimality principle

The microkernel is not an indivisible entity

Composed of instructions, basic blocks, language constructs, etc.

The code inevitably follows some patterns that form architecture, design, 
abstractions, parametrization, etc.

Separation of concerns

The kernel implements only pure and universal mechanisms (“the what”) 
while the policies (“the how/when”) are delegated to user space

This is where microkernels differ
– Does “arbitrary policy” equal “no policy”?
– Is it fine to have a default (but replaceable) policy?



19Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Practical Differences

Monolithic kernel

Configurability via compile-time options and parametrization

Modularity via run-time dynamic linking

Tight module coupling, weak module cohesion

Structure is implicit and not enforced (especially at run time)

Microkernel

Configurability via different use (policy in user space)

Modularity via extension in user space

Loose module coupling, strong module cohesion

Structure is explicit and enforced (even at run time)



20Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Design Space of Operating Systems



21Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Design Space of Operating Systems

fine-grained
components

monolithic
components



22Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Design Space of Operating Systems

fine-grained
components

monolithic
components

safety via
isolation

raw
performance



23Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Design Space of Operating Systems

fine-grained
components

monolithic
components

safety via
isolation

raw
performance

static
deployment

dynamic
deployment



24Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Design Space of Operating Systems

fine-grained
components

monolithic
components

safety via
isolation

raw
performance

static
deployment

dynamic
deployment

microkernel
multiserver OS

microkernel
single server OS

monolithic
kernel OS

unikernel
OS separation

kernel

hypervisor



25Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Architecture of User Space

Monolithic OS

hardware

monolithic kernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC device

drivers
file system

drivers
user

mgmt
network

stack ...



26Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Architecture of User Space

Single-server microkernel OS

hardware

microkernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC

system server
device
drivers

file system
drivers

user
mgmt

network
stack

...



27Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Architecture of User Space

Multiserver microkernel OS

file system
driver server

hardware

microkernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC

naming
server

location
server

device driver
server

device driver
server

device driver
server

file system
driver server
file system

driver server

device
multiplexer

file system
multiplexer

network
stack

security
server

...



28Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Architecture of User Space

Type-1 hypervisor

hardware

hypervisor

hyper-privileged
modememory

mgmt scheduler comm

privileged mode

operating system

kernel

privileged mode

unprivileged mode

app app

app app

operating system

kernel

privileged mode

unprivileged mode

app app

app app

operating system

kernel

privileged mode

unprivileged mode

app app

app app



29Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Architecture of User Space

Type-1 hypervisor (in common deployment)

hardware

hypervisor

hyper-privileged
modememory

mgmt scheduler comm

privileged mode

operating system

kernel

privileged mode

unprivileged mode

app

operating system

kernel

privileged mode

unprivileged mode

app

operating system

kernel

privileged mode

unprivileged mode

app



30Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Architecture of User Space

Hypervisor with unikernels

hardware

hypervisor

hyper-privileged
modememory

mgmt scheduler comm

privileged mode

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component



31Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Architecture of User Space

Multiserver microkernel with unikernels for device drivers

hardware

unikernel

kernel
component

file system
driver server

application application application

naming
server

location
server

device driver
server

device driver
server

device driver
server

file system
driver server
file system

driver server

device
multiplexer

file system
multiplexer

network
stack

security
server

...
device
driver

microkernelmemory
mgmt scheduler IPC

privileged mode

unprivileged mode



32Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Architecture of User Space

Multikernel

CPU

kernel

application

privileged mode

unprivileged mode

serverserver

application

CPU

kernel

application

serverserver

application

CPU

kernel

application

serverserver

application



Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems 33

Capabilities



34Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Capabilities

Motivation

A universal and pure mechanism in the kernel to safely manage (all) 
operating system resources

Without implementing any specific management policy in the kernel
(i.e. delegating the management policy completely to user space)

Potential secondary goal

Possibility to grant or delegate (parts of) the authority over resources from 
the original owner of a resource to other users

In a controllable fashion (i.e. including the possibility of revocation)



35Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Capabilities

Definition

Capability

Object (instance of a given object type) identifying some specific (operating system) resource
Kernel object identifying a kernel-managed resource
Kernel object (proxy object) identifying a user space resource
User space object identifying a user space resource

Capability reference

Unforgeable identifier (handle) to a capability
Might be associated with permissions (e.g. permissible operations, methods) and ownership

Capability space

Each capability reference is local to a specific namespace (typically associated with a specific 
task, process) and does not have any meaning in other namespaces

Akin to (virtual) address space



36Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

What Are Capabilities, Anyway?

kernel space

user space

read(0, ...);

0 1 2 3 file descriptor table
(capabilities in capability space)

file descriptor
(capability reference)

vfs_file_t operating system resource
(open file)



37Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Capability Granting

kernel space

user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

0 1 2 3



38Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Capability Granting

kernel space

user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

recvmsg(socket, &msg, 0);

int fd;
memmove(&fd, CMSG_DATA(cmsg), sizeof(fd));

0 1 2 3 4



39Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Chicken & Egg Problem

What if we want to represent all resources as capabilities?

Even the resource (memory) needed to store the capabilities and 
capability references is a capability

We start with some basic capability (untyped capability) that represents 
(physical) memory

Encapsulated capability vs. naked capability
This capability can be retyped to a different capability or converted to multiple 
capabilities

– Allocating kernel objects
– Allocating capability nodes that bind capability references to capabilities

Bookkeeping objects (e.g. memory for page tables) might also be represented as 
capabilities



40Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Capability Derivation Tree

Permissible ways of retyping capabilities

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

cnode
cap

TCB
cap

L1 PT
cap

L2 PT
cap

1 page1 page

1 page 1 page2 pages 6 pages

10 pages



41Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Representing Capability Space

Effective and efficient storage for capability nodes

Criteria

Low memory overhead and fragmentation even for sparse capability spaces

Fast lookup of capability references (typically the most frequent operation)

Reasonably fast creation and removal of new capability references

Possibility to store metadata (e.g. permissions, ownership/delegations) and even 
actual kernel objects (up to a certain size) in-line

Typical candidates

Arrays

Hash tables

Radix trees



42Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Hierarchical Capability Space

kernel space

user space

00 01 11

cnode
cap cnode_t (10 bit index)

cnode
cap

untyped
cap cnode_t (10 bit index)

untyped
cap

endpoint
cap

page
cap

untyped
cap cnode_t (10 bit index)

mem_region_t

cspace

cref_t

resource



43Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Capability Operations

Actions that can be performed with capabilities

The permissible set of operations might be defined/restricted by the capability 
reference itself

Each capability reference might permit different methods despite pointing to the 
same object

Invoke

Executing some “business logic” operation on the target object

Clone

Creating a duplicate capability reference

Mint

Creating a duplicate capability reference, but with restricted permissions



44Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Capability Operations (2)

Derive

Retyping the capability to a different capability type or converting it to multiple 
capabilities

Permissible retyping/conversions defined by the capability derivation tree

Delegate

Passing the ownership of the capability reference to different capability space

Grant

Creating a duplicate capability reference (possibly with restricted permissions) in a 
different capability space (while keeping ownership)

Might be done only once or recursively

Revoke

Removing a granted capability reference from a different capability space



Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems 45

Get to Know 
Microkernels



Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems 46



Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems 47



48Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

HelenOS Microkernel Functional Blocks

ar
ch

it
e

ct
u

re
 in

d
e

p
e

n
d

e
n

t

sh
ar

e
d

 a
rc

h
it

e
ct

u
re

d
e

p
e

n
d

e
n

t

ar
ch

it
e

ct
u

re
d

e
p

e
n

d
e

n
t

bootstrap
routines

CPU
mgmt

atomics
&

barriers

I/O
mgmt

platform
memory

mgmt

platform
drivers

debugging
support

context
switching

interrupt
handling

platform
library

routines

shared
platform
drivers

shared
debugging

support

hierarchical
page table

support

global page
hash table

support

hardware abstraction layer

kernel
unit
tests

memory
backends

memory
zones
mgmt

frame
allocator

slab
allocator

address
space
mgmt

memory
reservation

spinlocks

wait
queues

work
queues

interrupt &
syscall

dispatch

thread
scheduler

thread &
task

mgmt

kernel
lifecycle

mgmt

lists,
trees,

bitmaps

concurrent
hash
table

generic
resource
allocator

ELF
loader

string
routines

misc
routines

kernel
debug

console

IPC

kernel
log

hardware
resource

mgmt

system
information

cycle &
time

mgmt

tracing
support

read-
copy-

update

capabilities
cache

coherency

synchro-
nization
interface



49Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

HelenOS User Space Architecture

device
manager

device drivers

client
session

vterm bdsh

vfs

file system
drivers

FAT exFAT ext4

ISO 9660 UDF MINIX FS

TMPFS Location FS

kernel

naming
service

loader
task

monitor

klog
location
service

logger

init

transport
layer protocols

tcp udp

link layer
protocols

loopip ethip

slip

inetsrv

networking
management

dnsrsrv dhcp

nconfsrv

human interface

clipboard audio

outputinput

console compositor

remote
console

remote
framebuffer



50Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

HelenOS User Space Device Drivers

root drivers

architecture virtual

platform drivers

pc maltaicp

leon3

mac

msim

amdm37x

bus drivers

isa amba

pci ohci

uhci xhci

ehci

interrupt
controller drivers

obio icp-ic

apic i8259

character
device drivers

pl050 ns8250

ps2 i8042

xtkbdisdv4

s3c24xx

block device
drivers

ata RAM disk

ahci ddisk

file disk partitions

mbr guid

network interface
drivers

ne2000

ar9271 e1000

rtl8139 rtl8169

audio drivers

sb16 hdaudio

framebuffer
drivers

kfb amdm37x

class drivers

USB hub

USB MID USB HID

UHCI root hub

USB mass storage

clock drivers

cmos-rtc



51Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Genode OS Framework

[1] Feske N.: Introducing kernel-agnostic Genode executables, Genode Labs, FOSDEM 2017,
https://fosdem.org/2017/schedule/event/microkernel_kernel_agnostic_genode_executables/

https://fosdem.org/2017/schedule/event/microkernel_kernel_agnostic_genode_executables/


52Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Further Reading

Du D., Hua Z., Xia Y., Zang B., Chen H.: XPC: Architectural Support for 
Secure and Efficient Cross Process Call, ACM/IEEE 46th Annual 
International Symposium on Computer Architecture (ISCA), 2019

https://ieeexplore.ieee.org/abstract/document/8980352

Matthias Lange: The impact of Meltre and Specdown on microkernel 
systems (*), Microkernel Devroom, FOSDEM, 2019

(*) Deliberate misspelling of Meltdown and Spectre

https://archive.fosdem.org/2019/schedule/event/meltre_specdown/

https://ieeexplore.ieee.org/abstract/document/8980352
https://archive.fosdem.org/2019/schedule/event/meltre_specdown/


Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems 53

Q&A



Thank You!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

