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About the Speaker

Charles University

Research scientist at D3S (2008 – 2017)

Graduated (Ph.D.) in 2015

Co-author of the HelenOS (http://www.helenos.org/) microkernel 
multiserver operating system

Huawei Technologies

Senior Research Engineer, Munich Research Center (2017 – 2018)

Principal Research Engineer, Dresden Research Center (2019 – present)

http://www.helenos.org/
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Huawei Dresden Research Center (DRC)

Since 2019, ~20 employees (plus a virtualization team in Munich)
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Huawei Dresden Research Center (DRC) (2)

Focuses on R&D in the domain of operating systems

Microkernels, hypervisors

Collaboration with the OS Kernel Lab in Huawei HQ

Collaboration with TU Dresden, MPI-SWS, ETH Zürich and other institutions

Formal verification of correctness, weak memory architectures

Safety and security certification

Many-core scalability, heterogeneous hardware

Flexible OS architecture
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We Are Hiring

Operating System Engineer / Researcher (Dresden)

https://apply.workable.com/huawei-16/j/3BAC3458E6/

Formal Verification Engineer / Researcher (Dresden)

https://apply.workable.com/huawei-16/j/95CCAD4EC5/

Virtualization Engineer / Researcher (Munich)

https://apply.workable.com/huawei-16/j/51F90678EA/

Industrial Ph.D. Student (Dresden)

In collaboration with TU Dresden

https://apply.workable.com/huawei-16/j/3BAC3458E6/
https://apply.workable.com/huawei-16/j/95CCAD4EC5/
https://apply.workable.com/huawei-16/j/51F90678EA/
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Systems Software Innovations Summit 2021

March 30th – 31st 2021

https://huawei-events.de/, on-line, no participation fee

https://huawei-events.de/
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Microkernels
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Microkernel-based Operating Systems

Motivation

Safety, security, reliability, dependability

Proper software architecture

Formal verification of correctness

Modularity, customization

Virtualization, paravirtualization

Tasks and virtual machines are quite similar types of entities

Partitioning, support for mixed criticality
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Monolithic OS Design Is Flawed

Biggs S., Lee D., Heiser G.: The Jury Is In: Monolithic OS Design Is 
Flawed: Microkernel-based Designs Improve Security, ACM 9th Asia-
Pacific Workshop on Systems (APSys), 2018

“While intuitive, the benefits of the small TCB have not been quantified to 
date. We address this by a study of critical Linux CVEs, where we examine 
whether they would be prevented or mitigated by a microkernel-based 
design. We find that almost all exploits are at least mitigated to less than 
critical severity, and 40 % completely eliminated by an OS design based 
on a verified microkernel, such as seL4.”

https://dl.acm.org/doi/10.1145/3265723.3265733

https://dl.acm.org/doi/10.1145/3265723.3265733
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Some Data Points from History

Compatible Time-Sharing System (CTSS)

John McCarthy, MIT Computation Center, 1961

Probably one of the earliest “real” operating system
Not just a loader, jobs manager or batch manager

RC 4000 Multiprogramming System

Per Brinch Hansen, Regnecentralen, 1969

Separation of mechanism and policy, modularity via isolated concurrently running 
processes, message passing

Multics

MIT, General Electric, Bell Labs, 1969

Traceable influence on UNIX
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Some Data Points from History (2)

HYDRA

William Wulf, Carnegie Mellon University, 1971

Capability-based, object-oriented, separation of mechanism and policy

Probably the earliest peer-reviewed publication of the design principles

UNIX

Ken Thompson, Dennis Ritchie, Brian Kernighan et al., Bell Labs, 1973

Architecture and design traceable in many current monolithic systems

VMS

Digital Equipment, 1977

Architecture and design traceable in Microsoft Windows
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Some Data Points from History (3)

EUMEL / L2

Jochen Liedtke, University of Bielefeld, 1979

Proto-microkernel based on bitcode virtual machines

QNX

Gordon Bell, Dan Dodge, 1982

Earliest commercially successful microkernel multiserver OS
Still in active use and development today

CMU Mach

Richard Rashid, Avie Tevanian, Carnegie Mellon University, 1985

Arguably the most widespread microkernel code base
Still a core part of macOS, iOS and other OS clones by Apple today (but not in a microkernel configuration)
Despite its well-publicized shortcomings, it remains highly influential
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Microkernel-based Operating Systems

Definition

Operating system that follows specific design principles that, in effect, 
minimize the amount of code running in the privileged (kernel) mode

Hence the name

Every microkernel-based OS follows slightly different specific design 
principles

Two design principles are probably universally common
Minimality principle
Split of mechanism and policy principle
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Minimality Principle

The obvious criterion

The kernel needs to implement the functionality than cannot be possibly 
implemented in user space

On typical commodity hardware, this includes
Bootstrapping
Fundamental part of hardware exception and interrupt handling
Configuration of certain control registers (possibly including MMU)
Fundamental part of mode switching (e.g. related to hardware virtualization, 
trusted execution environments, etc.)
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Minimality Principle (2)

The necessary criterion

The kernel needs to implement the functionality than cannot be 
delegated only to a trusted user space component without also 
delegating it to any untrusted user space component (thus undermining 
the fundamental guarantees that the operating system provides)

On typical commodity hardware, this includes
Configuration of the forced preemption mechanism (e.g. timer interrupt 
routing)
Fundamental part of interacting with a hypervisor, firmware and some hardware 
components

– Hardware components are tricky: Without IOMMU, almost any interaction
with hardware might potentially undermine the OS guarantees
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Minimality Principle (3)

The practicality criterion

The kernel might also implement the functionality that would be 
unpractical (while still technically possible) to be safely delegated to user 
space

This is where microkernels differ, but there are still some universal examples
Context switching
Basic scheduling
System timer configuration
Observability and (optional) debugging support



18Martin Děcký, March 25th 2021 Microkernel-based and Capability-based Operating Systems

Split of Mechanism and Policy Principle

Orthogonal to the minimality principle

The microkernel is not an indivisible entity

Composed of instructions, basic blocks, language constructs, etc.

The code inevitably follows some patterns that form architecture, design, 
abstractions, parametrization, etc.

Separation of concerns

The kernel implements only pure and universal mechanisms (“the what”) 
while the policies (“the how/when”) are delegated to user space

This is where microkernels differ
– Does “arbitrary policy” equal “no policy”?
– Is it fine to have a default (but replaceable) policy?
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Practical Differences

Monolithic kernel

Configurability via compile-time options and parametrization

Modularity via run-time dynamic linking

Tight module coupling, weak module cohesion

Structure is implicit and not enforced (especially at run time)

Microkernel

Configurability via different use (policy in user space)

Modularity via extension in user space

Loose module coupling, strong module cohesion

Structure is explicit and enforced (even at run time)
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Design Space of Operating Systems
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Design Space of Operating Systems

fine-grained
components

monolithic
components
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Design Space of Operating Systems

fine-grained
components

monolithic
components

safety via
isolation

raw
performance
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Design Space of Operating Systems

fine-grained
components
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Design Space of Operating Systems

fine-grained
components

monolithic
components

safety via
isolation

raw
performance

static
deployment

dynamic
deployment

microkernel
multiserver OS

microkernel
single server OS

monolithic
kernel OS

unikernel
OS separation

kernel

hypervisor
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Architecture of User Space

Monolithic OS

hardware

monolithic kernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC device

drivers
file system

drivers
user

mgmt
network

stack ...
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Architecture of User Space

Single-server microkernel OS
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microkernel

application application application

privileged mode

unprivileged mode
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system server
device
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Architecture of User Space

Multiserver microkernel OS

file system
driver server
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Architecture of User Space

Type-1 hypervisor
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Architecture of User Space

Type-1 hypervisor (in common deployment)
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Architecture of User Space

Hypervisor with unikernels
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Architecture of User Space

Multiserver microkernel with unikernels for device drivers
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Architecture of User Space
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Capabilities
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Capabilities

Motivation

A universal and pure mechanism in the kernel to safely manage (all) 
operating system resources

Without implementing any specific management policy in the kernel
(i.e. delegating the management policy completely to user space)

Potential secondary goal

Possibility to grant or delegate (parts of) the authority over resources from 
the original owner of a resource to other users

In a controllable fashion (i.e. including the possibility of revocation)
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Capabilities

Definition

Capability

Object (instance of a given object type) identifying some specific (operating system) resource
Kernel object identifying a kernel-managed resource
Kernel object (proxy object) identifying a user space resource
User space object identifying a user space resource

Capability reference

Unforgeable identifier (handle) to a capability
Might be associated with permissions (e.g. permissible operations, methods) and ownership

Capability space

Each capability reference is local to a specific namespace (typically associated with a specific 
task, process) and does not have any meaning in other namespaces

Akin to (virtual) address space
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What Are Capabilities, Anyway?

kernel space

user space

read(0, ...);

0 1 2 3 file descriptor table
(capabilities in capability space)

file descriptor
(capability reference)

vfs_file_t operating system resource
(open file)
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Capability Granting

kernel space

user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

0 1 2 3
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Capability Granting

kernel space

user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

recvmsg(socket, &msg, 0);

int fd;
memmove(&fd, CMSG_DATA(cmsg), sizeof(fd));

0 1 2 3 4
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Chicken & Egg Problem

What if we want to represent all resources as capabilities?

Even the resource (memory) needed to store the capabilities and 
capability references is a capability

We start with some basic capability (untyped capability) that represents 
(physical) memory

Encapsulated capability vs. naked capability
This capability can be retyped to a different capability or converted to multiple 
capabilities

– Allocating kernel objects
– Allocating capability nodes that bind capability references to capabilities

Bookkeeping objects (e.g. memory for page tables) might also be represented as 
capabilities
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Capability Derivation Tree

Permissible ways of retyping capabilities

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

cnode
cap

TCB
cap

L1 PT
cap

L2 PT
cap

1 page1 page

1 page 1 page2 pages 6 pages

10 pages
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Representing Capability Space

Effective and efficient storage for capability nodes

Criteria

Low memory overhead and fragmentation even for sparse capability spaces

Fast lookup of capability references (typically the most frequent operation)

Reasonably fast creation and removal of new capability references

Possibility to store metadata (e.g. permissions, ownership/delegations) and even 
actual kernel objects (up to a certain size) in-line

Typical candidates

Arrays

Hash tables

Radix trees
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Hierarchical Capability Space

kernel space

user space

00 01 11

cnode
cap cnode_t (10 bit index)

cnode
cap

untyped
cap cnode_t (10 bit index)

untyped
cap

endpoint
cap

page
cap

untyped
cap cnode_t (10 bit index)

mem_region_t

cspace

cref_t

resource
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Capability Operations

Actions that can be performed with capabilities

The permissible set of operations might be defined/restricted by the capability 
reference itself

Each capability reference might permit different methods despite pointing to the 
same object

Invoke

Executing some “business logic” operation on the target object

Clone

Creating a duplicate capability reference

Mint

Creating a duplicate capability reference, but with restricted permissions
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Capability Operations (2)

Derive

Retyping the capability to a different capability type or converting it to multiple 
capabilities

Permissible retyping/conversions defined by the capability derivation tree

Delegate

Passing the ownership of the capability reference to different capability space

Grant

Creating a duplicate capability reference (possibly with restricted permissions) in a 
different capability space (while keeping ownership)

Might be done only once or recursively

Revoke

Removing a granted capability reference from a different capability space
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Get to Know 
Microkernels
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HelenOS Microkernel Functional Blocks
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HelenOS User Space Architecture

device
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device drivers

client
session
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HelenOS User Space Device Drivers

root drivers

architecture virtual

platform drivers

pc maltaicp

leon3

mac

msim
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bus drivers
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Genode OS Framework

[1] Feske N.: Introducing kernel-agnostic Genode executables, Genode Labs, FOSDEM 2017,
https://fosdem.org/2017/schedule/event/microkernel_kernel_agnostic_genode_executables/

https://fosdem.org/2017/schedule/event/microkernel_kernel_agnostic_genode_executables/
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Further Reading

Du D., Hua Z., Xia Y., Zang B., Chen H.: XPC: Architectural Support for 
Secure and Efficient Cross Process Call, ACM/IEEE 46th Annual 
International Symposium on Computer Architecture (ISCA), 2019

https://ieeexplore.ieee.org/abstract/document/8980352

Matthias Lange: The impact of Meltre and Specdown on microkernel 
systems (*), Microkernel Devroom, FOSDEM, 2019

(*) Deliberate misspelling of Meltdown and Spectre

https://archive.fosdem.org/2019/schedule/event/meltre_specdown/

https://ieeexplore.ieee.org/abstract/document/8980352
https://archive.fosdem.org/2019/schedule/event/meltre_specdown/
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Q&A



Thank You!
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