
http://d3s.mff.cuni.czhttp://d3s.mff.cuni.cz/teaching/nswi143

Lubomír Bulej

bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physicsfaculty of mathematics and physics

Computer Architecture
Memory hierarchy

Computer Architecture
Memory hierarchy

http://d3s.mff.cuni.cz/teaching/nswi143

2/74Computer Architecture, Memory hierarchy, summer 2024/2025

The memory wallThe memory wall

CPU performance limited by memory performance
CPU performance grows faster than memory performance

Simple operations take tenths of ns
Access to memory takes tens of ns
Pick two of three: memory as fast as the CPU, sufficient capacity,
reasonable price

3/74Computer Architecture, Memory hierarchy, summer 2024/2025

The memory wall (2)The memory wall (2)

Burks, Goldstine, von Neumann: Preliminary
discussion of the logical design of an
electronic computing instrument (1946)

„Ideally, one would desire an infinitely large
memory capacity such that any particular word
would be immediately available [...] We are forced
to recognize the possibility of constructing a
hierarchy of memories, each of which has a
greater capacity than the preceding but which is
less quickly accessible.“

4/74Computer Architecture, Memory hierarchy, summer 2024/2025

The memory wall (3)The memory wall (3)

Analogy: books and library
Library

Lots of books, slow access (walk to the library)
Library size (finding the right book takes some time)

How to avoid high latency?
Borrow some of the books

Leave them on a desk or a shelf
– Often-used books at hand (temporal locality)
– Borrow more books on the same topic (spatial locality)
– Think of what will be needed next (pre-fetching)

Both the desk and the self have limited capacity

5/74Computer Architecture, Memory hierarchy, summer 2024/2025

The memory wall (4)The memory wall (4)

How to get over the memory wall?
Exploit locality of memory accesses

Property of most real (useful) programs
Applies to both instructions and data

Temporal locality
Recently used data are likely to be accessed again in near
future → keep such data in a small, but very fast memory

Spatial locality
Data near recently used data are likely to be accessed in near
future → access data in larger blocks (that include data in
close proximity)

6/74Computer Architecture, Memory hierarchy, summer 2024/2025

Volatile memoryVolatile memory

Static RAM
Primary goal: speed
Secondary goal: capacity

6 transistors per 1 bit, speed depends on area (latency
for small capacities can be < 1 ns)

Combines well with other CPU logic
Contents stay in memory as long as it is powered

No need for periodic refresh

7/74Computer Architecture, Memory hierarchy, summer 2024/2025

Static RAMStatic RAM

D-type flip-flop
1 bit, ~ 4 gates, ~ 9 transistors

D Q

d

c

q

8/74Computer Architecture, Memory hierarchy, summer 2024/2025

Static RAM cellStatic RAM cell

Pair of inverters + control transistors
6 transistors per 1-bit cell

bit line !bit line

word line

9/74Computer Architecture, Memory hierarchy, summer 2024/2025

Static RAM in matrix arrangementStatic RAM in matrix arrangement

M × N bits: M rows of N bits
Row selection

Binary to 1-hot
Access in
two steps

1. Row selection
(word lines)

2. Column read
(bit lines)

wl[2]

wl[1]

wl[0]

bl[0] bl[1] bl[2]

10/74Computer Architecture, Memory hierarchy, summer 2024/2025

Static RAM (2)Static RAM (2)

memory
matrix

row
 decoder

⁞
X

Y Y-gating

.........

bit 0

bit n-1

n-bit address

data

11/74Computer Architecture, Memory hierarchy, summer 2024/2025

Volatile memory (2)Volatile memory (2)

Dynamic RAM
Primary goal: density (cost per bit)

1 transistor + 1 capacitor per 1 bit
High latency

40 ns internally
100 ns between circuits

Contents deteriorate over time
Needs periodic refresh (read data and write it back)

Difficult to combine with CPU logic
Different manufacturing process

12/74Computer Architecture, Memory hierarchy, summer 2024/2025

Dynamic RAM cellDynamic RAM cell

Capacitor + control transistor
Information stored as electric charge

Capacitor charges/discharges itself due to
losses and content of surrounding cells

Reading is destructive (value read is
immediately written back)

bit line

word line

wl[1]

wl[0]

bl[0] bl[1]

sense
amplifiers

13/74Computer Architecture, Memory hierarchy, summer 2024/2025

Dynamic RAMDynamic RAM

memory
matrix

row
 decoder

⁞

control logic Sense amps

.........

address
data

Y-gating

.........

Y

RAS

CAS

WE

14/74Computer Architecture, Memory hierarchy, summer 2024/2025

Increasing DRAM performanceIncreasing DRAM performance

Observation
Reading DRAM row takes the most time
Row contains more than just the requested word
Need to amortize the cost of reading a row

Use more words from last read row
Pipelining data output and selecting (reading) new row

The recently read row is stored in an output register, start
reading another row while data is being transmitted from the
data register to the CPU (via bus or other interconnects)

15/74Computer Architecture, Memory hierarchy, summer 2024/2025

Exploiting locality of accessExploiting locality of access

Hierarchy of memory components
Higher tiers (closer to CPU)

Fast, small, expensive
Lower tiers (farther from CPU)

Slow, large, cheap
Mutually interconnected

Adds latency, limits bandwidth
Most frequently used data in M1

Second most frequently used data in M2, etc.
Need to deal with transfers between tiers

Optimize for average latency
Latavg = Lathit + Latmiss × %miss

CPU

M1

M2

M3

16/74Computer Architecture, Memory hierarchy, summer 2024/2025

Hierarchy of memory componentsHierarchy of memory components

M0: CPU registers
Data for instructions

M1: Primary (level 1) cache
Separate instruction/data
cache
SRAM (kB)

M2: Secondary (level 2) cache
Ideally on chip,
certainly in package
SRAM (MB)

M3: Main memory
SRAM (kB—MB,
embedded devices)
DRAM (GB)

M4: Swap memory
Files, swap space
HDD, flash (TB)

CPU

D

L2

RAM

Regs

I

Disk

Managed by compiler

Managed by HW (CPU)

Managed by SW (OS)

17/74Computer Architecture, Memory hierarchy, summer 2024/2025

Hierarchy of memory components (2)Hierarchy of memory components (2)

Back to the library analogy
CPU register ↔ currently open page in a book

Only one page
Primary (level 1) cache ↔ books on a desk

Actively used, very quick access, small desk capacity
Secondary (level 2) cache ↔ books on a shelf

Actively used, relatively quick access, medium capacity
Main memory ↔ library

Almost all data, slow access, huge capacity
Swap memory ↔ inter-library borrowing

Very slow, very rare

18/74Computer Architecture, Memory hierarchy, summer 2024/2025

CacheCache

Big and fast memory (an illusion)
Data transfer between cache levels handled by
hardware

Automatically finds missing data
Cache controller

Integrated on-chip SRAM
Software can provide hints

Cache organization (ABC)
Associativity, Block size, Capacity
3C model of cache misses

19/74Computer Architecture, Memory hierarchy, summer 2024/2025

Mapping memory directly to cacheMapping memory directly to cache

Basic structure
An array of cache lines

E.g., 1024 cache lines, 64 B each → 64 KB
„Hardware hash table“ based on address

Example configuration for 32bit addresses
64-byte blocks → the lowest 6 bits addresses
the byte in a block (offset bits)
1024 blocks → next 10 bits represents
block number (index bits)
What about the remaining 16 bits?

20/74Computer Architecture, Memory hierarchy, summer 2024/2025

Mapping memory directly to cache (2)Mapping memory directly to cache (2)

[31:16] [15:6] [5:0]

Address (32-bit)

⁞

h2

data

⁞

MUX

data

index
offset

What would happen if we did
not make use of these 16 bits?

21/74Computer Architecture, Memory hierarchy, summer 2024/2025

Mapping memory directly to cache (3)Mapping memory directly to cache (3)

Finding the correct data
Each cache line can contain one of 216 different blocks
of main memory with identical cache line number (in
our example)

“Hash function“
Detect the matching data

Flag indicating cache line validity (valid bit)
Tag with the remaining bits of the address (tag bits)

Algorithm
1. Read cache line determined by the index
2. If the valid bit is set and the tag matches the bits in the

rest of the address, then it is a cache hit
3. Otherwise cache miss

22/74Computer Architecture, Memory hierarchy, summer 2024/2025

Mapping memory directly to cache (4)Mapping memory directly to cache (4)

[31:16] [15:6] [5:0]

address

⁞

h2

data

⁞

MUX

data

index offsettag

tag v

⁞ ⁞

=

va
lid

hit

23/74Computer Architecture, Memory hierarchy, summer 2024/2025

Metadata overhead (tags, valid bits)Metadata overhead (tags, valid bits)

64 KB cache with 1024 cache lines of 64B each
For 32-bit addresses

(16 bits per tag + 1 valid bit) × 1024 cache lines ~ 2,1 KB
Overhead 3,3 %

For 64-bit addresses
(48 bits per tag + 1 valid bit) × 1024 cache lines ~ 6,1 KB
Overhead 9,6 %

24/74Computer Architecture, Memory hierarchy, summer 2024/2025

Handling a cache missHandling a cache miss

Read data into cache
Cache controller

Sequential circuit/state machine
Requests data from the next level of memory hierarchy
using the memory address that caused the cache miss
Writes data, tag, and valid bit into cache line

Cache misses cause pipeline stalls
Stall logic controlled by the cache miss signal
Scalar pipeline stalls (situation similar to data hazard)
Superscalar pipeline can still execute other instructions

Cache operates independently from the data path
CPU supports multiple in-flight memory operations

25/74Computer Architecture, Memory hierarchy, summer 2024/2025

Cache performanceCache performance

Cache operations
Cache access (load/store from/to memory)
Cache hit (data found in cache and passed to data path)
Cache miss (data not found, trigger load from next level)
Cache fill (loading data into cache)

Metrics characterizing cache performance
%miss: fraction of cache misses from all cache accesses
(miss rate)
thit: time needed to access cache (and to get data on cache
hit)
tmiss: time needed to read data into cache

Goal: minimize average access time
tavg = thit + tmiss × %miss

26/74Computer Architecture, Memory hierarchy, summer 2024/2025

Reducing miss rateReducing miss rate

Obvious approach: increase capacity
Miss rate decreases monotonically

Law of diminishing returns
thit increases with square
root of capacity

Less obvious approach
Change cache organization

Capacity is restricted by transistor budget
Try to get the most out of available resources

[1]

27/74Computer Architecture, Memory hierarchy, summer 2024/2025

Cache organization: block sizeCache organization: block size

Increasing block (cache line) size
Attempt to exploit spatial locality
Decrease the number of cache lines

Moves the split between index and offset bits of an
address
The number of tag bits does not change

Consequences
Reduces miss rate (to a degree)
Less tag overhead (smaller number of cache lines)
More potentially useless data transfers
Premature replacement of potentially useful data

28/74Computer Architecture, Memory hierarchy, summer 2024/2025

Block (cache line) size vs miss rateBlock (cache line) size vs miss rate

Spatial prefetching
Changes miss/miss to miss/hit for blocks with
consecutive addresses (stored in consecutive blocks)

Interference
Changes hit to miss for blocks with non-consecutive
addresses stored in consecutive cache blocks

Prevents having both blocks in
the cache at the same time

Always: mix of both effects
Spatial prefetching dominates
initially, interference kicks in later

Limit case: single (huge) cache line
Common (block) cache line size: 16 – 128 B

[1]

29/74Computer Architecture, Memory hierarchy, summer 2024/2025

Block (cache line) size vs fill latencyBlock (cache line) size vs fill latency

In principle
Reading long cache lines should take longer

In practice
tmiss does not change too much for isolated misses

Critical Word First / Early Restart
Cache controller and memory cooperate to first transmit the
word actually requested by the CPU (to minimize pipeline
delays)
The rest of the cache line contents follow

tmiss increases when misses occur in batches
Cannot read/transmit/fill multiple lines at the same
time
Limited bandwidth between memory and the CPU
Delays of queued requests accumulate

30/74Computer Architecture, Memory hierarchy, summer 2024/2025

Caches with associative mappingCaches with associative mapping

Set associativity
Goal: reduce conflicts between memory blocks
mapped to the same cache line

A block of memory can be stored in any block
from a set of cache lines

Groups of blocks (cache lines) = sets
Cache line in a set = way

Example: 2-way set-associative cache
Limit cases

1 way: directly mapped cache
1 set: fully-associative cache

Increases thit
Selecting data from cache lines in the set

31/74Computer Architecture, Memory hierarchy, summer 2024/2025

Caches with associative mapping (2)Caches with associative mapping (2)

[31:16] [15:6] [5:0]

address

⁞

h2

data

⁞

data

index offsettag

tag v

⁞ ⁞

=

hit

h2

data

⁞

tag v

⁞ ⁞

ways

MUX

=

va
lid

va
lid

se
ts

32/74Computer Architecture, Memory hierarchy, summer 2024/2025

Caches with associative mapping (3)Caches with associative mapping (3)

Looking for data
1. Use index bits of the address to select a candidate

set of cache lines where to look for data
2. In parallel: fetch data and tags from all ways
3. In parallel: compare all tags with address tag bits

Impact on tag/index bit split (constant capacity)
More ways → less sets → less index bits
More tag bits

33/74Computer Architecture, Memory hierarchy, summer 2024/2025

Cache associativity vs miss rateCache associativity vs miss rate

Increasing associativity
Reduces miss rate

Law of diminishing returns
Increases thit

Note: n-way associative cache where
n is not a power of 2 is feasible

Not commonly found though
Cache line (block) size should be power of 2
Number of sets should be power of 2

Simplifies addressing (simply cut off address bits)

[1]

34/74Computer Architecture, Memory hierarchy, summer 2024/2025

Fully associative cacheFully associative cache

Set-associative with 1 set
(number of ways = number of blocks)

A block of memory can be in any block of cache
(cache line)
All bits of address bits (except offset bits)
represent a tag
Associative memory

Contents addressed by a key (key = tag)
Analogy: key/value pairs in a hash map

35/74Computer Architecture, Memory hierarchy, summer 2024/2025

Fully associative cache (2)Fully associative cache (2)

[31:6] [5:0]

address

data

data

offsettag

tag v

=

hit

data tag v

MUX

=

va
lid

va
lid

...

...

...

⁞

36/74Computer Architecture, Memory hierarchy, summer 2024/2025

3C model: understanding cache misses3C model: understanding cache misses

Cache miss classification
Compulsory (cold) miss

„Ain’t seen no such address before“
Cache miss would occur even in infinitely large cache

Capacity miss
Caused by insufficient cache capacity

Repeated access to a block of memory separated by at least N
accesses to N other blocks (where N is number of blocks in
cache)
The working set is simply too large

Cache miss would occur even in fully-associative cache
Conflict miss

All the (remaining) misses that are not cold/capacity
Caused by low cache associativity

37/74Computer Architecture, Memory hierarchy, summer 2024/2025

Miss rate: ABCMiss rate: ABC

Consequences of the 3C model
Increasing associativity does not help
if there are no conflict misses
Associativity

Reduces the number of conflict misses
Increases thit

Block (cache line) size
Increases the number of conflict/capacity misses (less cache
lines)
Reduces number of cold/capacity misses (spatial locality)
Does not (mostly) influence thit

Capacity
Reduces the number of capacity misses
Increases thit

38/74Computer Architecture, Memory hierarchy, summer 2024/2025

Reading data from cacheReading data from cache

Tag and (all) data can be read in parallel
If a tag does not match, data is not used (cache miss)

Issues a fill request to lower layer of the memory hierarchy
Read miss: where to put data from lower layer?

Replace contents of “some” cache line with new data
The original content is evicted

Direct-mapped cache
The cache line to evict is determined by address index bits

(Set) associative cache
All ways within a set are potential candidates, need to pick a
“victim”
Ideally: don’t throw away data that will be needed soon

Random
LRU (Least Recently Used): optimal wrt. temporal locality
NMRU (Not Most Recently Used): approximates LRU

39/74Computer Architecture, Memory hierarchy, summer 2024/2025

Writing data to cacheWriting data to cache

Write hit
Data can be written to the cache line

If writing to cache only, the data in cache and main memory will be
inconsistent

Write through
Data always stored both to cache AND lower layer/memory on store
operation
Problem: memory operations (a thus store instructions) take too long
Solution: write data to cache and a write buffer (output towards lower
layer)

CPU only needs to wait if the write buffer is full (How can that happen?)
Write buffer needs to be checked when looking for data in cache

Write-back
Data only stored to cache on store operation

Requires a „dirty bit“ to indicate if a cache line has been modified wrt. lower
layer

Modified (dirty) cache line only written to memory when evicted
Improves performance when a program issues stores as fast or faster
than the memory can handle
More difficult to implement

40/74Computer Architecture, Memory hierarchy, summer 2024/2025

Writing data to cache (2)Writing data to cache (2)

Write miss in a write-through cache
Reading tag/writing data can be done at the same time

Overwriting wrong data is not a big problem, the right data is in
memory

Write allocate
Fill cache with data from lower layer first
Continue as if it was write hit: replace part of cache line with new data
Can prevent cache misses on future accesses (locality)

Not always the case
Requires sufficient memory bandwidth

Write no-allocate
Data written only to the lower layer
Eliminates fill from lower layer on write miss

Suitable for “pass though” data that the CPU only touches once
Zeroing a page, writing block of data to disk, sending a packet over network

Processors often allow setting a write strategy
for individual pages

41/74Computer Architecture, Memory hierarchy, summer 2024/2025

Writing data to cache (3)Writing data to cache (3)

Write miss in a write-back cache
Cannot always read tag and write data at the same
time

Modified cache line to be evicted first needs to be written to
lower level of the hierarchy

Write requires two steps...
Check for hit/miss and then write

… or using a store buffer (input from data path)
Check hit/miss while putting data into buffer
Data written from store buffer to cache on write hit

Writing into a modified cache line (on replacement)
Data moved from cache line to write-back/victim buffer,
stored to lower layer/memory later (asynchronously)
When looking for data in cache, the write-back buffer
needs to be consulted too

42/74Computer Architecture, Memory hierarchy, summer 2024/2025

Multi-level caches (1)Multi-level caches (1)

Goal: reduce cache miss penalty
1-level cache:
Total CPI = 1.0 + Memory stall cycles per
instruction

4 GHz processor, memory access 100 ns (400 cycles),
2% cache misses:
Total CPI = 1.0 + 2% x 400 = 9

2-level cache:
Total CPI = 1.0 + Primary stalls per instruction +
Secondary stalls per instruction

Hit/miss latency 5 ns (20 cycles),
reduces miss rate to 0.5%:
Total CPI = 1.0 + 2% x 20 + 0.5% x 400 = 3.4

43/74Computer Architecture, Memory hierarchy, summer 2024/2025

Multi-level caches (2)Multi-level caches (2)

Different cache levels have different roles
Allows optimizing for different criteria than with single-
level cache

Primary cache (L1)
Minimize hit time
Allows increasing clock rate or reducing number of pipeline
stages
Typically smaller capacity, smaller cache lines (lower
penalty for cache miss)

Secondary cache (L2)
Minimize miss rate
Reduces penalty for accessing memory
Significantly larger capacity (access time not critical),
larger cache lines, higher associativity (focus on reducing
miss rate)

44/74Computer Architecture, Memory hierarchy, summer 2024/2025

Do we need to know (about caches)?Do we need to know (about caches)?

Quick Sort vs. Radix Sort
LaMarca, Ladner (1996)
O(n×log n) vs. O(n)
Theory: nothing of interest

Source: P&H

45/74Computer Architecture, Memory hierarchy, summer 2024/2025

Do we need to know (about caches)? (2)Do we need to know (about caches)? (2)

Surprise: Quick Sort turned out to be faster
for larger amounts of data ...

Source: P&H

46/74Computer Architecture, Memory hierarchy, summer 2024/2025

Do we need to know (about caches)? (3)Do we need to know (about caches)? (3)

Theory vs practice
The way the Radix Sort implementation accessed
data caused too many cache misses

Source: P&H

47/74Computer Architecture, Memory hierarchy, summer 2024/2025

Do we need to know (about caches)? (4)Do we need to know (about caches)? (4)

Solution
Modify Radix Sort implementation to first process
data in a block of memory that is already in cache
(cache line)

48/74Computer Architecture, Memory hierarchy, summer 2024/2025

Memory dominates CPU performanceMemory dominates CPU performance

The memory wall
CPU performance grows faster than memory
performance

There is no ideal memory technology
Fast, large, cheap – pick two out of three

Locality in accessing memory
Temporal + spatial, found in real (useful) programs

Solution: hierarchy of memories
Optimize average time to access memory
Different technologies in different levels
Transfer data between levels

49/74Computer Architecture, Memory hierarchy, summer 2024/2025

Cache: an illusion of ideal memoryCache: an illusion of ideal memory

1-3 levels of fast memory between CPU and main
memory

SRAM, L1 capacity ~ 64KiB, L2/L3 capacity ~
256KiB-16MiB
Transparent from programmer’s (and CPU) perspective

CPU (data path) only requests data from cache
Data transfers between cache and memory handled by HW

Data stored in blocks (cache lines) corresponding to
blocks of memory

tag – part of an address that disambiguates the mapping of
memory blocks to cache blocks

3C model: cache miss classification
Changing cache organization to eliminate cache misses

ABC: basic cache parameters
Associativity, block (cache line) size, capacity

50/74Computer Architecture, Memory hierarchy, summer 2024/2025

Acknowledgment/CreditsAcknowledgment/Credits

The following 23 slides are based on lecture
slides for the “Parallel Computer Architecture
and Programming” course at CMU (15-418)

Specifically, slides for lecture on Cache Coherence
(Part 1) from the Spring 2012 edition of the course
were used.

Even though the slides do not provide authorship
information, the course was taught by Kayvon Fatahalian at
that time.

Fair use is presumed to apply.
The material is used for instruction in classroom
at a non-profit educational institution.

Any errors or omissions are my own.

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s12/www/

51/74Computer Architecture, Memory hierarchy, summer 2024/2025

Memory hierarchy and parallelismMemory hierarchy and parallelism

Multiprocessor systems with shared memory
Programs read and write to shared variables

Processors issue read/write requests for specific memory
addresses

Intuitive expectation
Reading from a memory address always produces the last
value written to that address by any other processor

52/74Computer Architecture, Memory hierarchy, summer 2024/2025

The problem with caches...The problem with caches...

Contents of memory replicated in local caches
A necessity in modern processors
The (local) cache of different processors could
potentially contain different value for the same
memory location

53/74Computer Architecture, Memory hierarchy, summer 2024/2025

The problem with caches... (2)The problem with caches... (2)

Also exists in single-processor systems
DMA transfers between IO devices and memory
Both the device and the processor could read stale data

Usual solution
Buffer memory stored in an uncached physical page
Force cache flush after completing work on buffer contents

54/74Computer Architecture, Memory hierarchy, summer 2024/2025

The cache coherence problemThe cache coherence problem

Reading from memory address X should
return the last value written to address X by
any processor

Intuitive expectation for a shared memory system
Problem with multiple clients

Single-processor system with DMA transfers
Multi-processor systems

Cause: presence of local and global state
Multiple local states in processor caches
Global state in main memory

55/74Computer Architecture, Memory hierarchy, summer 2024/2025

Problems with the intuitive expectationProblems with the intuitive expectation

Not well defined for a multi-processor system
Reading from memory address always returns the last
value written to that address by any processor

What does “the last” mean?
What if two processors write at the same time?
What if a write by P1 followed by a read from P2 are
so close (in time) that it’s impossible to communicate
the occurrence of the read to other processors?

In sequential programs, “last” is determined by
program order (not time)

Also holds within a thread of a parallel program.
Inadequate for multiple parallel threads.

56/74Computer Architecture, Memory hierarchy, summer 2024/2025

Coherent shared memory systemCoherent shared memory system

Processor observes its own writes in program order
Intuitive requirement for single-processor systems
A read from address X by processor P that follows a write
to address X by processor P returns the value written by P

Assuming no other processor wrote to X in between
Writes to memory eventually observed by all
processors

A read from address X by processor P that follows a write
to address X by processor Q returns the value written by Q
if the read and write are sufficiently separated in time

Assuming no other processor wrote to X in between
Does not define when the news of a write is propagated.

Writes to the same location are serialized (ordered)
Two writes to the same location by any two processors are
observed in the same order by all processors.

57/74Computer Architecture, Memory hierarchy, summer 2024/2025

Write serialization (ordering)Write serialization (ordering)

Writes to the same location are serialized (ordered)
Two writes to the same location by any two processors
must be observed in the same order by all processors.

Example
P1 writes value a to X. Then P2 writes value b to X.
Consider the following situation

P1 first observes write of a to X and then the write of b to X
P2 first observes write of b do X and then the write of a to X

There is no global ordering of loads and stores to X that
would produce the results of such a parallel program

For a coherent system, a global ordering must exist that is
consistent with the result of program execution

58/74Computer Architecture, Memory hierarchy, summer 2024/2025

Coherence vs. consistencyCoherence vs. consistency

Coherence
Defines read/write behavior with respect to the same
memory location

Consistency
Defines read/write behavior with respect to different
locations
Deals with the when of write propagation

For our purposes
If a processor writes to address X and then to address
Y, then any processor that observes the result of the
write to Y also observes the result of write to X.

59/74Computer Architecture, Memory hierarchy, summer 2024/2025

Implementing coherenceImplementing coherence

Hardware solutions
HW ensures that a read from a memory location
by any processor returns the last value written to
that place

For a suitable/reasonable definition of “last”
Metadata keeps information about data in cache
with respect to others
Solutions: invalidating or updating data in cache

Coherence protocol: rules for updating the metadata of
a particular cache line (block) in the whole system

60/74Computer Architecture, Memory hierarchy, summer 2024/2025

Simple solution: shared cacheSimple solution: shared cache

Issues with scaling
Interference, contention

Potential advantages
Fine sharing granularity (overlap of working sets)
Actions by one processor may prefetch data for others

61/74Computer Architecture, Memory hierarchy, summer 2024/2025

Solutions based on snoopingSolutions based on snooping

Processors (cache controllers) on shared interconnect
All events related to coherence broadcast to all processors (cache
controllers) in the system.

Cache controllers snoop on (monitor) all memory operations
Each (individually) reacting so as to ensure coherency
Must react to events from both the processor side (data path) and the
interconnect side (activity of other processors)

62/74Computer Architecture, Memory hierarchy, summer 2024/2025

Simple coherence implementationSimple coherence implementation

Write-through cache
Coherence granularity: one cache
line

Invalidates a cache line in other
processors on write

Broadcast write to a cache line on
the shared interconnect

Other processors invalidate the
cache line in their local caches

Next read of that cache line by
other processors will result in a
cache miss
The other processors are forced
to retrieve the updated value
from memory

63/74Computer Architecture, Memory hierarchy, summer 2024/2025

Basic Valid/Invalid (VI) protocolBasic Valid/Invalid (VI) protocol

A/B = action A observed, action B taken
Bus (interconnect) initiated transaction
Processor initiated transaction

Protocol actions
Processor Read (PrRd)
Processor Write (PrWr)
Bus Read (BusRd)
Bus Write (BusWr)

Interconnect requirements
All write transactions visible to all cache
controllers in the same order

Simplifying assumptions
Write-through cache with write no-allocate policy
Interconnect and memory transactions are atomic
Processor waits until previous memory operation
is complete before issuing next memory operation
Invalidation applied immediately as a part of
receiving the invalidation broadcast

64/74Computer Architecture, Memory hierarchy, summer 2024/2025

Write-through policy is inefficientWrite-through policy is inefficient

Every write propagated to memory
Very high bandwidth requirements

Write-back cache absorb most writes
Significantly reduces bandwidth requirements
How to ensure write propagation/serialization?
Requires a more sophisticated protocol

65/74Computer Architecture, Memory hierarchy, summer 2024/2025

Invalidation protocol for write-back cacheInvalidation protocol for write-back cache

Cache line in exclusive state can be modified without
notifying the other caches

Other caches don’t have the cache line, therefore other
processors cannot read data from it without issuing a
memory read request

Writes only possible to cache lines in exclusive state
If a processors wants to write to a cache line that is not in
exclusive state, the cache controller first broadcasts a read-
exclusive transaction

Tells the other caches about an impending write
Note: read-exclusive broadcast is also required for cache
lines already present in cache (to upgrade their state)
Dirty cache line is necessarily exclusive

When cache controller snoops a read-exclusive
request...

If it concerns a cache line it contains, it must invalidate it

66/74Computer Architecture, Memory hierarchy, summer 2024/2025

Basic MSI invalidation protocolBasic MSI invalidation protocol

Key tasks
Obtain exclusive access for write
Locate the most recent value on cache
miss

Protocol states
I: invalid cache line
S: clean cache line in one or more caches
M: dirty cache line in exactly one cache
(dirty or exclusive state)

Protocol actions
Processor Read (PrRd)
Processor Write (PrWr)
Bus Read (BusRd)

Read cache line with no intent to modify
Bus Read Exclusive (BusRdX)

Read cache line with intent to modify
Bus Write Back (flush)

Write cache line out to memomry

67/74Computer Architecture, Memory hierarchy, summer 2024/2025

Does MSI satisfy coherence requirements?Does MSI satisfy coherence requirements?

Write propagation
Through invalidation.

Write ordering
Writes that appear on the bus are ordered by the order
they appear on the bus (BusRdX)
Reads that appear on the bus are ordered by the order
they appear on the bus (BusRd)
Writes that don’t appear on the bus (cache line already in
M state)

Sequence of writes to line comes between two bus transactions
for the line.
All writes in sequence performed by the same processor P (that
observes them in the correct order)
All other processors will observe the writes to the cache line after
a bus transaction for the line. All the writes will come before the
transaction.
All processors observe writes in the same order

68/74Computer Architecture, Memory hierarchy, summer 2024/2025

MESI invalidation protocolMESI invalidation protocol

MSI requires 2 transactions for common case of
reading and then modifying data

1. transaction: BusRd to move from I state to S state.
2. transaction: BusRdX to move from S state to M
state.

Even when a cache line is never shared
Solution: new state E (exclusive clean)

Cache line is not modified, but exists in exactly one
cache
Decouples exclusivity from cache line ownership
(cache line not dirty, therefore copy in memory is a
valid copy)
Upgrade from E to M does not require a bus
transaction

69/74Computer Architecture, Memory hierarchy, summer 2024/2025

MESI invalidation protocol (2)MESI invalidation protocol (2)

70/74Computer Architecture, Memory hierarchy, summer 2024/2025

More efficient (and complex) protocolsMore efficient (and complex) protocols

MOESI (AMD Opteron)
Downgrade from M to S in MESI requires a memory write
MOESI adds O state (owned, not exclusive) without memory write
(cache line remains dirty)
Other processors can have a cache line in S state, exactly one processor
has a cache line in state O
Data in memory are stale, cache controller with a cache line in O state
needs to service cache misses for other processors

MESIF (Intel)
Like MESI, but one cache keeps a shared cache line in F state (forward)
instead of S
Cache with a cache line in F state services cache miss
Cache that was the last to read a cache line keeps the line in F state

The F state migrates to the last cache that read it after a read miss
It is assumed that the cache does not drop the cache line immediately
(so that F state is not lost)

Simplifies the decision about who services a cache miss

71/74Computer Architecture, Memory hierarchy, summer 2024/2025

Consequences of implementing coherenceConsequences of implementing coherence

Each cache must snoop and react on coherence
events broadcast on shared interconnect

Necessary to duplicate cache tags so that looking up a
tag does not interfere with load/store requests from
the processor

Higher utilization of shared interconnect
Can be significant/limiting for high number of cores

Some CPUs don’t implement coherency at all, or
only in a limited form

Overhead is too high, less applicable in graphic
applications

72/74Computer Architecture, Memory hierarchy, summer 2024/2025

Consequences for a programmerConsequences for a programmer

Is there a performance problem?
// per-thread event counters
int per_thread_counters [NUM_THREADS];

void thread_worker(int worker_id) {
 for (int i = 0; i < 1000; i++) {
 // ... do some work ...
 per_thread_counters[worker_id]++;
 }
}

73/74Computer Architecture, Memory hierarchy, summer 2024/2025

Consequences for a programmer (2)Consequences for a programmer (2)

Coded with “mechanical sympathy“
struct PaddedCounter {
 int counter;
 char padding [CACHE_LINE_SIZE - sizeof (int)];
};

// per-thread event counters
PaddedCounter per_thread_counters [NUM_THREADS];

void thread_worker(int worker_id) {
 for (int i = 0; i < 1000; i++) {
 // ... do some work ...
 per_thread_counters[worker_id].counter++;
 }
}

74/74Computer Architecture, Memory hierarchy, summer 2024/2025

False sharingFalse sharing

Two threads write to different variables in the
same cache line

Cache line jumps between caches of writing
processors
Coherence protocol causes intensive communication
between caches even though the threads don’t
communicate (and don’t synchronize) at all
All communication an unwanted product of false
sharing

Can significantly impact program performance
on architectures implementing coherency

Most commonly available processors
Regardless of the programming language

