NSWI101 FIRST HOMEWORK ASSIGNMENT

The objective of this assignment is to model the MESI cache coherency protocol using Promela. You can find a detailed description of the protocol on the <u>MESI</u> protocol Wikipedia page.

Assignment Instructions:

1. CPU Process Type:

Develop a process type named CPU that represents a CPU. Instantiate this process type multiple times to simulate a set of CPUs.

2. Memory Access Simulation:

In each instance of the Cpu process, implement a loop that randomly reads from and writes to memory addresses, representing typical program behaviour. Use a cache for these operations to simulate speed optimization, with the assumption that cache access is faster than accessing main memory.

3. Cache Coherency Protocol:

Design the model so that the cache operates according to the MESI coherence protocol.

4. **Property Verification:**

Identify and verify several key properties of the model. Ensure that, at a minimum, you verify properties demonstrating the correctness of the protocol (e.g., ensuring that each cache remains coherent). Think broadly and creatively to identify additional meaningful properties to check.

EXAMPLE PARAMETRIZATION (YOU ARE FREE TO MODIFY IT)

The size of global memory: 4 bytes. The number of cpus: 2. The size of the cache of each cpu: 1 byte. The values stored in the cache and memory: 0, 1. The cpus communicate via a shared variable (using a channel is another option).

NOTES

If you want to access local variables of processes inside LTL formulae, do not put them inside the process, but make them global.