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1 Introduction

Boolean satisfiability problem (SAT) is to find a satisfying assignment of a proposi-
tional formula. It was among the first problems shown to be NP-complete. Despite
its theoretical complexity, there has been a tremendous effort to create SAT solvers
that could decide practical problems. This effort has been largely successful, as
many modern SAT solvers are used today to solve problems in hardware, software
verification, and bounded model checking, among others. They are usually based
on the conflict-driven clause learning (CDCL) algorithm [14, 12, 15].

Satisfiability modulo theories (SMT) is an extension of the SAT problem to
first-order logic [7]. SMT solvers typically utilize CDCL SAT solvers to find a
satisfying assignment of a Boolean abstraction of the original formula. A theory-
specific decision procedure is then used to either extend this assignment to theory
variables or refute it. This approach is often called DPLL(T).

Model Constructing Satisfiability Calculus (MCSat) is an alternative to the
DPLL(T) approach. It extends the CDCL framework used in many modern SAT
solvers to SMT problems [7, 10]. Unlike DPLL(T), MCSat tries to construct a
model directly in a specified theory. Advances in SAT solvers can thus be directly
applied or adapted for MCSat.

Most SMT solvers are based on the DPLL(T) approach. MCSat has not at-
tracted a lot of attention in the SMT community yet. The goal of this project is
to create a prototype SMT solver based on the MCSat framework, implement a
plugin for the theory of Linear real arithmetic (LRA), and evaluate the solver on
the SMT-LIB benchmark [4].

1.1 Outline
Section 2 describes the MCSat framework, heuristic functions used by Yaga, and
some experimental features we implemented. The architecture of the solver is
described in Section 3. Section 4 evaluates Yaga on the SMT-LIB [4] bench-
mark for quantifier-free Linear real arithmetic (QF LRA) and compares it with a
DPLL(T)-based SMT solver.
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1.2 Source code
Our prototype implementation of the SMT solver based on MCSat is publicly
available1 on GitHub.

The Yaga prerequisites include:

• C++ compiler with C++20 support

• cmake version at least 3.17

• flex version at least 2.6

To build Yaga, run the following commands:

1. mkdir build-release

2. cd build-release

3. cmake -DCMAKE BUILD TYPE=Release ..

4. make

1.3 Publication
We submitted Yaga to the SMT-COMP 2023 [3]. The solver implemented in
our work is extensible to facilitate further research on decision procedures in the
MCSat framework and the development of tools that use the solver as the back
end.

1https://github.com/d3sformal/yaga
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2 Model Constructing Satisfiability Cal-
culus

The MCSat framework is split into several main components: the core solver, solver
trail, clause database, theory-specific plugins, and heuristics (e.g., variable order,
restart scheme, and clause minimization) [10]. The solver trail is a central solver
component that records current progress. Theory plugins analyze the content of
the trail and add new elements. They also detect inconsistencies and generate
conflict clauses (false clauses in the current trail). Conflicts are analyzed by the
core solver, which derives learned clauses and adds them to the clause database.
The core solver also dispatches events in the system, like adding a new variable
or a newly learned clause to all other components. Some decisions in the solver
are controlled by heuristic functions (e.g., which variable should be decided next
or whether we should restart).

2.1 Solver trail
The solver trail is a data structure that records the progress of the solver. It is a
sequence of trail elements [10]:

• decisions: assignment of a value to a variable. We denote the decision of a
variable x with x ↦→ v where v is the new value of the variable x.

• clausal propagations: propagation of a literal by a Boolean constraint propa-
gation (BCP). BCP propagates literal L as a clausal propagation if it detects
a clause C = L1, . . . , Ln, L such that n ∈ N0 and ¬L1, . . . ,¬Ln are on the
trail while L is unassigned (i.e., C is a unit clause).

• semantic propagations mark a literal, which represents a fully-assigned con-
straint. We say that a constraint is fully-assigned if all variables that ap-
pear in the constraint are assigned. For example, in Linear Real Arithmetic
(LRA), a constraint x < 0, such that the rational variable x is assigned, can
be evaluated. The LRA plugin has to propagate it to the trail as a semantic
propagation.
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In addition, we associate a decision level with each trail element. The decision
level of a decision or clausal propagation is the number of decisions prior to and
including the element [10]. The decision level of a semantic propagation is the
highest decision level of any variable in the propagated literal. For example, in
the trail M = (x ↦→ 0, y ↦→ 1, z ↦→ 3), we can propagate x + y ≤ 2 at the decision
level 2 since that is the highest decision level of {x, y}.

In order to describe the properties of the trail, we borrow terminology used by
De Moura et al. [7]. A trail is consistent if, for each literal on the trail, the value of
the literal according to the current first-order model is true. For example, a trail
M = (x < 0, x ↦→ −1) is consistent because the literal x < 0 is true when x ↦→ −1.
On the other hand, the trail would not be consistent if we replaced the decision
x ↦→ −1 with x ↦→ 0. The solver trail may briefly become inconsistent when
a plugin detects a conflict. In this case, the core solver restores consistency by
backtracking (i.e., removing all trail elements above some decision level). A trail
is infeasible if it contains a set of literals that is unsatisfiable given the current
assignment of variables.

2.2 The core solver
The core solver implements an extension of the CDCL algorithm [10] (Algo-
rithm 1).

Algorithm 1: The core solver loop
while true do

conflicts← propagate() ;
if conflicts then

learned, level← analyze(conflicts) ;
if any clause in learned is an empty clause then

return unsat
backtrack with(learned, level) ;

else
if all variables have been decided then

return sat
else

decide() ;

Theory plugins propagate literals to the trail in the propagate() method [10].
We run propagation in all plugins until no new elements are added to the trail.
Plugins can also detect conflicts during propagation which are reported to the core
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solver as conflict clauses. A conflict clause is a clause that is false in the current
trail.

Conflict analysis
Plugins can return multiple conflict clauses. The core solver analyzes all conflicts
in the analyze() method, which returns a list of newly learned clauses and a
decision level to backtrack to. For the purposes of backtracking, we distinguish
two types of learned clauses based on the top-level literals (set of literals in the
learned clause with the highest decision level):

• unique implication point [14] (UIP) clause, which has exactly one top-level lit-
eral L. The core solver resolves UIP conflicts by backtracking to the second-
highest decision level1 and by propagating L.

• semantic split clause: all top-level literals are semantic propagations. Se-
mantic split conflicts are resolved by backtracking to one level below the
top level and deciding one of the top-level literals. Semantic split conflicts
replace a decision of a non-Boolean variable with a decision of a Boolean
variable [7].

The core solver can backtrack only with a UIP or semantic split clause. How-
ever, a conflict clause returned by a plugin may not satisfy these requirements. In
order to derive a conflict clause suitable for backtracking, the analyze() method
resolves top-level literals that were added to the trail by clausal propagations [10].
Algorithm 2 summarizes the conflict analysis procedure. The reason() function
returns the clause that propagated the provided literal. The resolve(C, D, L)
function returns the resolvent of the clauses C and D with respect to the literal L.
This conflict analysis corresponds to the first UIP strategy [16, 10] used in many
modern CDCL SAT solvers if the returned clause is a UIP clause.

If there are several conflict clauses, we choose conflicts that backtrack to the
lowest decision level. The rest of the clauses are discarded. Moreover, if there are
UIP conflict clauses and semantic split clauses that would backtrack to the same
level, we only use the UIP clauses. The rationale for this is that UIP clauses lead
to a propagation instead of a decision which is more valuable for the progress of the
solver (we refer to the proof of MCSat termination [7] for more information). Thus,
if the core solver is about to backtrack, it only has a list of one type of conflict
clause (UIP or semantic split clauses). UIP conflicts are resolved by propagating
all implied literals (i.e., we propagate the top-level literal from each conflict clause).
Semantic split clauses are resolved by deciding one of the top-level literals from
conflict clauses.

1The solver backtracks to level 0 if the conflict clause has only one literal.
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Algorithm 2: Derive conflict clause suitable for backtracking [10]
input : Conflict clause C and the current solver trail M .
output: Conflict clause suitable for backtracking.
Function analyze(C, M):

k ← size of M ;
while C is not empty, UIP clause, or a semantic split clause do

k ← k − 1;
if M [k] is a clausal propagation of L and ¬L ∈ C then

C ← resolve(C, reason(L), L);

return C

Heuristics
The core solver uses several heuristic functions. Heuristics listen to events and try
to decide some problems for which we do not have an optimal answer.

• Variable order chooses the next variable to decide in the decide() method.
We also use this heuristic to determine which one of the top-level literals in
a semantic split conflict will be decided next. Choosing the value of the
selected variable is delegated to the theory-specific plugin responsible for
that variable.

• Restart policy has one method, should restart(), which is called when-
ever the core solver encounters a conflict. If this method returns true, the
solver restarts instead of backtracking (i.e., it removes all elements from the
trail; learned clauses are retained).

• Clause deletion deletes learned clauses it deems unnecessary on restart.
Clauses should only be deleted on restart because other components may
keep pointers to clauses.

2.3 Theory plugins
Theory plugins manage constraints and variables of some type. The primary pur-
pose of plugins is to propagate literals and to detect conflicts. They are also
responsible for deciding the values of managed variables. These responsibilities
are concentrated in two main methods:

• propagate(): propagates implied literals to the trail. The plugin generates
conflict clauses in case a conflict is detected. If a plugin is responsible for
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deciding values of variables of some type, it should be unit-constraint com-
plete [10]. A plugin is unit-constraint complete if each propagate() call
either returns conflict clauses or, after the call, for each unassigned variable
managed by the plugin, there exists a decision of this variable such that if
we append this decision to the current trail, the trail remains consistent.

• decide(): decides a value of the provided variable such that the trail is
consistent if we add this decision.

Moreover, all theory plugins in Yaga are event listeners, so they receive all
notifications about events in the system.

2.4 Boolean plugin
The primary purpose of the plugin is to perform Boolean constraint propagation
(BCP) to exhaustion. BCP finds all unit clauses in the system and propagates
the implied literals to the trail. Clause C = L1 ∨ · · · ∨ Ln ∨ L, n ∈ N0 is unit
if all literals ¬L1, . . . ,¬Ln are on the trail and L is unassigned. The unassigned
literal L from a unit clause C can be propagated as a clausal propagation to the
trail using C as the reason for the propagation. It is sufficient to perform BCP to
exhaustion to satisfy the unit-constraint completeness requirement [10].

We use the mechanism of watched literals [12] to detect unit clauses. Two
literals in each clause are designated as watched literals. We try to maintain
a property that each watched literal L is non-falsified (i.e., ¬L is not on the trail).
When a watched literal L is falsified, the plugin tries to find some non-falsified
replacement in the clause. If there is no suitable replacement, we can detect unit
or empty clauses:

• The other watched literal is unassigned. In this case, the clause is unit, and
the plugin propagates the only unassigned literal in the clause to trail using
a clausal propagation.

• The other watched literal is false. In this case, the clause is false, and the
plugin stops the unit propagation process and returns this clause as a conflict.

• The other watched literal is true. In this case, we do not even try to replace
L as the watched literal since the clause is already satisfied.

Similarly to MiniSat [15], we move the watched literals to the first two positions
in each clause. We maintain a map which maps a literal to the list of clauses in
which it is watched. Moreover, we cache the last checked position in each clause.
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When a literal is falsified, the search for a new non-falsified literal to watch starts
from the cached position. This is to avoid skipping past a long list of falsified
literals every time we falsify a watched literal in a long clause.

2.5 Linear real arithmetic
The plugin for deciding Linear real arithmetic (LRA) is responsible for rational
variables and linear constraints. Linear constraints are equalities and inequalities
(<,≤, =, ̸=, >,≥) on linear polynomials.

We internally represent linear constraints in a normalized form ∑︁n
i=1 xici▽c

where x1, . . . , xn are rational variables with non-zero coefficients c1, . . . , cn ∈ Q \
{0}, c ∈ Q is the constant term in the linear polynomial, and ▽ is one of the
predicates <,≤, =. The rest of the predicates (>,≥, ̸=) can be obtained by negat-
ing a normalized linear constraint. Each constraint is associated with a Boolean
variable and can be (uniquely) identified by a literal. While the general form of
a linear constraint is normalized, the variables x1, . . . , xn can be stored in any
order to facilitate finding unit linear constraints (i.e., constraints with exactly one
unassigned variable) by swapping the variables as they are assigned.

Variable bounds
When a linear constraint on the trail becomes unit, it implies a bound for its
only unassigned rational variable. We use a system of watched variables [10]
similar to watched literals [12] (Section 2.4) to detect unit linear constraints. The
first two variables in each constraint are the watched variables. If either of the
watched variables is assigned, we try to find a new unassigned variable to watch.
If there are no other unassigned variables, the constraint is either unit (in case the
other watched variable is unassigned), or fully-assigned (in case the other watched
variable is assigned). Similarly to watched literals, we also cache the last checked
position in each constraint. The search for an unassigned variable starts from this
cached position.

The LRA plugin keeps track of an interval of values that can be assigned to
each rational variable [10] and a list of disequalities. Bounds of this interval may
change when an inequality from the trail becomes unit since unit constraints imply
a bound for the only unassigned variable (we treat equalities as two inequalities
≤,≥). The plugin also propagates fully-assigned linear constraints to trail using
semantic propagation.
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¬(pL ▽L x) ∨ ¬(x ▽U pU) ∨ pL ▽R pU

Figure 2.1: Explanation of a bound conflict [10].

Conflict analysis
If the interval of allowed values for a rational variable shrinks to an empty set, it
has to be either due to a bound conflict or due to a disequality conflict [10]. We
say that variable x is in a bound conflict if there are two linear constraints on the
trail: a lower bound pL ▽L x and an upper bound x ▽U pU such that pL, pU are
linear polynomials which evaluate to l, u ∈ Q in current trail, respectively, and
l > u or l = u and at least one of the constraints ▽L,▽U is strict (i.e., <).

Bound conflicts can be explained by Fourier-Motzkin elimination of x from
the bounds [10]. Figure 2.1 shows the explanation clause. The ▽R predicate is a
combination of ▽L and ▽U (i.e., ▽R is ≤ if none of the bounds are strict and it is
< otherwise).

We say that a rational variable x is in a disequality conflict [10] if there are
three inequalities on the trail: a lower bound pL ≤ x, an upper bound x ≤ pU ,
and a disequality x ̸= pD such that pL, pU , and pD evaluate to the same value in
current trail. Disequality conflict can be explained using the disequality lemma
(Figure 2.2).

x = pD ∨ ¬(pL ≤ x) ∨ ¬(x ≤ pU) ∨ pL < pD ∨ pD < pU

Figure 2.2: Explanation of a disequality conflict [10].

A unit equality x = pE where pE is a linear polynomial implies both a lower
bound and an upper bound for the rational variable x. There is a special case of
the disequality conflict if both the lower bound and the upper bound come from
the same equality x = pE such that pE and pD evaluate to the same value in current
trail. We explain this special case with the clause in Figure 2.3 which is equivalent
to the clause in Figure 2.2 if we substitute pL and pU with pE. However, it does
not include any new literals that could not be evaluated. The first two literals are
negations of literals that are on the trail. The rest of the clause pE < pD∨pD < pE

is equivalent to pE ̸= pD in LRA and it evaluates to false in current trail since
pE, pD evaluate to the same value.
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x = pD ∨ x ̸= pE ∨ pE < pD ∨ pD < pE

Figure 2.3: Explanation of a disequality conflict if lower bound and upper bound
of x come from the same equality.

2.6 Bound caching
The LRA plugin maintains a cache of computed bounds for each rational variable.
It is implemented with a stack of computed lower bounds, upper bounds, and a
list of disequalities for each rational variable. Equality is treated as a lower bound
and an upper bound. New bounds are added to the appropriate stack when they
are first computed. We lazily remove values from the top of each stack so that the
solver does not have to do extra work when it backtracks.

New bounds are compared with the strongest bound that is already in the
cache. A new bound is only added to the appropriate stack if the stack is empty
or the new bound improves the old bound. We say that a new lower bound
improves an old lower bound if the value of the new bound is strictly greater than
the old bound or they are equal, and the old bound is not strict (≥) while the new
bound is strict (>). We use a symmetric predicate to order upper bounds. If a
new bound does not improve the strongest old bound at the top of the stack, it is
redundant, and it will not be needed to derive a conflict.

We use variable timestamps [10] to detect that a value of a variable has changed.
The core solver has a global, ever-increasing integer which is incremented whenever
any variable is assigned a value. Moreover, we store a timestamp of each variable.
When a variable is assigned a value, its timestamp is set to the global timestamp.
We update the timestamp of a variable even if it is assigned the same value. To
detect whether a value of any variable from some set has changed, it is sufficient to
cache the maximal timestamp of variables in the set and later compare the stored
maximum with the current variable timestamps.

We use timestamps to detect obsolete bounds in Algorithm 3. It implements a
function that returns true if the provided bound is obsolete. The is unassigned()
function checks whether the provided variable is assigned a value in the current
trail. The timestamp() function returns the current timestamp of the variable.
In addition to the computed value of the bound, we also keep the linear constraint
from which we derived the bound (reason) in the normalized form (Section 2.5),
its timestamp2 (Tb), and the timestamp of the most recently assigned rational
variable from reason (Tr). The second variable in a constraint is the second

2We use the timestamp of a linear constraint interchangeably with the timestamp of its
Boolean variable.
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watched variable, the most recently assigned rational variable in the constraint
(we utilize an invariant of watched constraints from Section 2.5) when the bound
was computed. The value of any assigned, rational variable in reason can only be
changed after backtracking the decision of this variable. Consequently, we do not
have to check any other variable from reason to determine whether the bound is
obsolete.

Algorithm 3: Detect obsolete bounds
input : Linear constraint from which we derived the bound reason,

cached timestamp of the Boolean variable of reason: Tb, and a
cached timestamp of the second watched rational variable Tr

output: true if the bound is obsolete, false otherwise.
Function is obsolete(reason, Tb, Tr):

if is unassigned(reason) ∨ timestamp(reason) ̸= Tb then
return true

vars← variables(reason) ;
if size(vars) ≤ 1 then

return false
return is unassigned(vars1) ∨ timestamp(vars1) ̸= Tr

Algorithm 3 requires incrementing the variable timestamp even if the variable
is assigned the same value. Consider the following trail M = (x + y + z ≤ 0, z ↦→
0, y ↦→ 0) which implies an upper bound x ≤ 0 with timestamp(z) = 2 and
timestamp(y) = 3. If we backtrack the last two decisions and replace them with
z ↦→ 1 and y ↦→ 0, timestamp(y) would be unchanged, but the value of z had
changed, and the cached bound is no longer valid. However, Algorithm 3 would
not detect the change.

To determine the current lower bound or upper bound of a variable, we first
have to remove obsolete bounds from the top of the stack using Algorithm 3. To
check whether there is a disequality x ̸= v for some rational variable x and v ∈ Q,
we try to find v in the disequality list of x. If v is in the disequality list and it
is not obsolete according to Algorithm 3, there is a valid disequality x ̸= v. The
LRA plugin does not have to do anything with variable bounds after backtracking,
which simplifies the implementation.

2.7 Derivation of new bounds
New bounds are derived from unit linear constraints only (i.e., after most variables
from the constraint are decided). It is possible to derive new bounds earlier by
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eliminating some variables using Fourier-Motzkin (FM) elimination. For example,
if x + y = 0 and y = 0 are on the trail, but both variables x and y have yet to be
decided, we can derive x = 0. For another example with inequalities, if x + y ≤ 0
and y > 0 are on the trail, we can derive x < 0. In the rest of this section,
we assume that all linear constraints are inequalities (<,≤, >, or ≥). Equalities
can be treated as two inequalities (≤,≥). We do not derive new constraints from
disequalities ( ̸=) even though it may be possible in some cases (e.g., if x + y ̸= 0
and y = 0 are on the trail, we could derive x ̸= 0).

When a linear constraint is added to the trail, we try to eliminate all bounded
variables using bounds from the bound cache (Section 2.6). We say that a variable
in a linear constraint is bounded if it is not assigned, and we have a lower bound
or an upper bound in the bound cache that can be used to eliminate the variable
from the constraint using FM elimination.

If this process creates a unit linear constraint (i.e., there is exactly one unas-
signed variable), we can derive a new bound. We only compute the bound value
after FM elimination to avoid unnecessarily creating new linear constraints (Algo-
rithm 4). The rhs() function returns the constant term in the linear constraint
on the right-hand side of the inequality. The predicate() function returns the
predicate of the linear constraint (<,≤, >,≥, =, or ̸=). The value() function
returns the cached bound value if applied to a bound or the value of a variable if
applied to an assigned variable. The lower bound() and upper bound() functions
return the best lower and upper bound from the bound cache, respectively. These
functions return nullptr if there is no lower or upper bound.

Provided there is exactly one unassigned variable x in the linear constraint
after FM elimination of bounded variables, Algorithm 4 returns the bound value
(i.e., a constant b ∈ Q such that x▽b is implied in the current trail where ▽ is the
predicate of the bound after FM elimination <,≤, >,≥).

Producing explanations
Each bound in the bound cache (Section 2.6) additionally has a list of other bounds
which were used to eliminate some rational variables. These dependencies between
bounds essentially form a directed acyclic graph. If a bound is involved in a
conflict and it is not a leaf in this graph, we eliminate bounded variables using FM
elimination to produce an explanation for the bound [7].

The FM elimination is applied recursively (i.e., in order to eliminate bounded
variables in a bound we first have to eliminate all bounded variables in its depen-
dencies). Let x ≤ u be an upper bound such that u ∈ Q, D1, . . . , Dn are all distinct
linear constraints of bounds reachable in its dependency graph, and x ≤ pU is the
final result of FM elimination (i.e., pU is a linear polynomial which evaluates to
u in current trail). Then D1 ∧ · · · ∧ Dn → x ≤ pU is a valid explanation for the
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Algorithm 4: Compute the value of a bound
input : Linear constraint c with predicate <, ≤, >, or ≥ which is on the

trail.
output: Computed value of the bound provided there is exactly one

unassigned variable in c after FM elimination of bounded
variables.

Function compute bound(c):
ret← rhs(c) ;
for var, coef ← variables(c) do

if is unassigned(var) then
bound← nullptr;
if ((predicate(c) is < or ≤) ∧ coef > 0) ∨
((predicate(c) is > or ≥) ∧ coef < 0) then

bound← lower bound(var)
else

bound← upper bound(var)
if bound ̸= nullptr then

ret← ret− coef ∗ value(bound)
else

ret← ret− coef ∗ value(var)
return ret

upper bound. This can be shown by applying the FM elimination rule [10] and
Boolean resolution to resolve intermediate results. This explanation can be used
even if there are no bounded variables in the linear constraint. In that case, the
explanation is just a tautology ¬(x ≤ pU)∨x ≤ pU . We can derive a similar clause
for a lower bound.

For example, assume we have a trail M = (x + y ≤ 0, y + z ≥ 0, z ≤ 0). It
implies an upper bound z ≤ 0, a lower bound y ≥ 0 which depends on z ≤ 0, and
an upper bound x ≤ 0 which depends on y ≥ 0. The following process produces
an explanation for x ≤ 0 (i.e., a clause that would make the trail (M,¬(x ≤ 0))
infeasible):

1. FM elimination of z from y + z ≥ 0 (this is also an explanation for y ≥ 0):
¬(y + z ≥ 0) ∨ ¬(z ≤ 0) ∨ y ≥ 0

2. FM elimination of y from x + y ≤ 0: ¬(x + y ≤ 0) ∨ ¬(y ≥ 0) ∨ x ≤ 0

3. Boolean resolution of the previous two clauses using the literal y ≥ 0 pro-
duces ¬(x + y ≤ 0) ∨ ¬(y + z ≥ 0) ∨ ¬(z ≤ 0) ∨ x ≤ 0
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The final clause in step 3 is the explanation for x ≤ 0. The first three literals
in the explanation are negations of literals that are on the trail. The final literal
is the new bound x ≤ 0.

Bound conflict
Rational variable x is in a bound conflict (Section 2.5) if there is a lower bound
l ∈ Q and an upper bound u ∈ Q such that l > u or l = u and at least one of the
bounds is strict. The following process shows how to find an explanation for the
bound conflict in the presence of derived bounds. For brevity, we will assume that
the bounds are not strict (the process is analogous for strict bounds).

1. Find an explanation for the upper bound as in the previous section. This
produces a clause ¬D1∨· · ·∨¬Dn∨x ≤ pU such that pU is a linear polynomial
which evaluates to u in the current trail and D1, . . . , Dn are linear constraints
from the dependency graph of the upper bound.

2. Find an explanation for the lower bound as in the previous section. This
produces a clause ¬D′

1∨· · ·∨¬D′
m∨pL ≤ x such that pL is a linear polynomial

which evaluates to l in the current trail and D′
1, . . . , D′

m are linear constraints
from the dependency graph of the lower bound.

3. FM elimination of x: ¬(pL ≤ x) ∨ ¬(x ≤ pU) ∨ pL ≤ pU

4. Resolve the clause in step 1 with the clause in step 3 using the literal x ≤ pU

5. Resolve the clause in step 2 with the clause in step 4 using the literal pL ≤ x

The result of this process is the clause in Figure 2.4. All literals in this clause
except the last one are negations of literals from the trail. Moreover, the last literal
is a new constraint that does not contain unassigned variables, and it evaluates to
false in the current trail since we assumed a bound conflict.

¬D1 ∨ · · · ∨ ¬Dn ∨ ¬D′
1 ∨ · · · ∨ ¬D′

m ∨ pL ≤ pU

Figure 2.4: Explanation of a bound conflict if there are derived bounds.

Disequality conflict
To explain a disequality conflict (Section 2.5), we follow a similar procedure as for
bound conflicts. We resolve explanation of the upper bound ¬D1∨· · ·∨¬Dn∨x ≤
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pU with the disequality lemma (clause in Figure 2.2) derived by Jovanović et al. [10]
(using the literal x ≤ pU) and then we resolve the result with the explanation of
the lower bound ¬D′

1 ∨ · · · ∨ ¬D′
m ∨ pL ≤ x (using the literal pL ≤ x). The final

explanation is the clause in Figure 2.5.

x = pD ∨ ¬D1 ∨ · · · ∨ ¬Dn ∨ ¬D′
1 ∨ · · · ∨ ¬D′

m ∨ pL < pD ∨ pD < pL

Figure 2.5: Explanation of a disequality conflict if there are derived bounds.

2.8 Heuristics

Variable order
Yaga uses a generalization of the variable state independent decaying sum (VSIDS)
heuristic [15, 12] to order variables. We associate a score with each variable in the
solver regardless of its type. When a variable participates in a conflict, its score is
increased. Specifically, we increase the score of each variable in the learned clause
and any other clause that was resolved with the conflict clause in conflict analysis.
Variable scores decay (i.e., they are decreased) after each learned clause.

To avoid decreasing the scores of all variables after each learned clause, we
instead increase the amount by which variable scores are increased [15] by 5%.
This is roughly equivalent to the method described in the previous paragraph. An
advantage of this approach is that we only have to change the scores of variables
involved in the conflict. However, since we use a finite precision type for the scores,
they would eventually overflow, so we have to rescale all variable scores when they
become too large.

We implemented a heap to find the variable with the highest VSIDS score in
a logarithmic time. Moreover, the data structure has a table with the position of
each variable in the heap so we can update variable scores efficiently. Initially, all
variables are added to the heap, and the VSIDS score is initialized to the number
of occurrences of that variable in the input formula. Assigned variables from the
top of the heap are removed in the decide() method (Algorithm 1). Variables are
re-added to the heap when the solver backtracks.

Clause deletion
Each conflict in the solver generates at least one new learned clause. We delete
subsumed clauses [8] when the solver restarts to keep the clause database size
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manageable. Clause A subsumes clause B if A ⊆ B. In that case, we also say that
B is subsumed (by A).

Yaga indexes all learned clauses in the clause database by building a map
occur from literals to the list of clauses in which the literal occurs. It additionally
computes signatures of all learned clauses [8]. A signature is a 64-bit unsigned
integer defined in Equation 2.1. The h(L) function computes a hash of the literal
L, and ⊕ is the bitwise or operation.

sig({L1, . . . , Ln}) = 2h(L1) mod 64 ⊕ · · · ⊕ 2h(Ln) mod 64 (2.1)
To check whether A ⊆ B, Yaga first compares the sizes of the input clauses

and their signatures. If |A| > |B|, A cannot be a subset of B. Similarly, if
sig(A) & ∼ sig(B) ̸= 0 3, there is a literal in A, which is not in B, so A ̸⊆ B. We
have to perform the expensive subset check otherwise.

Algorithm 5: Mark all subsumed clauses [8].
input : Clause C.
output: All clauses subsumed by C are marked.
Function mark subsumed(C):

if C is marked then
return

L← literal from C with the shortest occur list;
for C ′ ∈ occur(L) do

if C ̸= C ′ ∧ subsumes(C, C ′) then
mark that C ′ is a subsumed clause;

Clauses are deleted using a mark-and-sweep approach. The mark subsumed
function from Algorithm 5 marks all clauses subsumed by clause C. Subsumed
clauses are marked by making them empty. Hence, if a marked clause is used as the
second argument of subsumes(), the function quickly returns false without going
through the literals of the first clause. The final phase then deletes all marked
clauses from the database.

Let N be the set of newly learned clauses since the last restart and O the set
of old learned clauses (i.e., the rest of the learned clauses). For all old clauses
A, B ∈ O, subsumes(A, B) returns false because we delete all subsumed clauses.
Consequently, we only have to check whether a new clause subsumes an old clause
or whether any clause subsumes a new clause. This is achieved by the following
process (the index operation creates the occur map from specified clauses):

3& is the bitwise and operation, and ∼ is the bitwise negation
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1. Mark old clauses subsumed by a new clause: index all clauses in O and then
run mark subsumed() for all clauses in N .

2. Mark new clauses subsumed by any clause: index all clauses in N and then
run mark subsumed() for all learned clauses in O ∪N .

Learned clause minimization
We use self-subsuming resolution [15, 8] to minimize learned clauses. Clause A is
self-subsumed by clause B with respect to the literal L if resolve(A, B, L) ⊆ A
where resolve(A, B, L) is the resolvent of A and B.

Yaga minimizes learned clauses using self-subsuming resolution by removing
all literals L such that the learned clause is self-subsumed by reason(¬L) [15]
where the reason() function returns the reason clause for the propagation of ¬L.
For example, if we have a conflict clause L∨L1∨L2 and the reason for propagating
¬L is the clause ¬L∨L1, then the resolvent of these two clauses is L1∨L2 which is
a strict subset of the conflict clause L∨L1 ∨L2, and so the literal L is redundant.

Restart strategy
Yaga’s restart strategy is based on the heuristic used by the Glucose solver [5].
The Glucose solver computes clause glucose level (LBD) when it learns a new
clause. LBD is the number of distinct decision levels of Boolean variables in the
clause. The main idea is to try to only learn good clauses with respect to their
LBD (i.e., clauses with a small LBD). It maintains a global average of all LBDs and
a moving average of recent LBDs. The solver restarts when the moving average
exceeds the global average by some threshold.

We use a more straightforward implementation, which maintains two exponen-
tial moving averages of LBDs with different parameters [6]. Both averages are
initialized with a zero. The formula to update the exponential moving average
ema given LBD of the current learned clause x is ema ← ema + α · (x − ema)
where α is a parameter. We use α = 2−13 for the global average and α = 2−5

for the recent average. Yaga restarts when the recent average exceeds the global
average by 30%. However, we also have a minimal number of conflicts since the
last restart (50) before the solver can restart again.

Variable values
The LRA plugin caches previously decided values of rational variables. Algorithm 6
shows the process of selecting a value for an unassigned rational variable x if the
current solver trail is M . The lower bound() and upper bound() functions return
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the strongest cached lower bound and upper bound, respectively. The value()
functions returns computed value of a cached bound.

Algorithm 6: Decide a value of a rational variable.
input : An unassigned rational variable x and the current solver trail M .
output: Value v ∈ Q such that (M, x ↦→ v) is consistent.
Function decide(x, M):

if we have a cached value v and (M, x ↦→ v) is consistent then
return v

if x can be assigned an integer then
return the smallest integer v ∈ Z (according to the absolute value)
such that (M, x ↦→ v) is consistent.

l← value(lower bound(x));
v ← value(upper bound(x));
while (M, x ↦→ v) is not consistent do

v ← (l + v)/2 ;
return v
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3 Architecture

Yaga consists of two main parts: frontend and backend. The frontend part con-
tains an abstract representation of terms in a tree structure. Another part of the
frontend parses formulas in the SMT-LIB format to this abstract representation.
SMT-LIB commands like checking satisfiability are delegated to the backend.

The backend part contains the core solver and theory plugins. It uses a different
theory-specific representation of constraints that is more restrictive. This allows us
to have a representation of constraints most suitable for each plugin, whereas the
abstract representation can be used for preprocessing and high-level optimizations.

3.1 Integration
The backend can be used through a facade interface Yaga which hides initialization
and implementation details. The facade contains methods for creating variables
of specified type, constraints, and clauses. The only types returned by the facade
are Variable (internal representation of a variable: ordinal number and a variable
type), Literal (Boolean variable or its negation), or a Clause (disjunction of
literals). Functions that create a specialized constraint return a literal representing
the constraint.

The facade constructor has one argument, which is an initializer. Initializer
instantiates all the necessary types for the specified theory. We predefined a couple
of initializes:

• logic::qf lra creates an MCSat backend for quantifier-free linear real arith-
metic.

• logic::propositional creates a SAT solver based on MCSat.

3.2 Backend
Figure 3.1 summarizes Yaga’s backend architecture. The core solver implements
Algorithm 1. It maintains the current solver state (solver trail and clause database)
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Figure 3.1: Overview of the backend architecture.

which is passed to event listeners and theory plugins. The way plugins and event
listeners interface with the solver is through the solver state by analyzing the
content of the trail added by other components and adding new elements.

The core solver calls propagate() in all plugins. If a plugin returns some con-
flict clauses, they are analyzed by the Conflict analysis class as described in
Section 2.2. If no conflict is detected during propagation, Yaga finds an unas-
signed variable to decide using the Variable order heuristic and calls decide()
with the selected variable in all plugins.

The core solver also dispatches events to all event listeners in the system.
Heuristic functions such as variable order (Variable order) and restart strategy
(Restart) as well as theory plugins (Theory), are all event listeners.

3.3 Solver state
The solver state is the solver trail and the database of asserted and learned clauses.
Solver trail records all decisions and propagations. We store variable values sep-
arately from trail elements. We have a table for each variable type that assigns
a value to a variable (Model). The trail.model() method returns the current
assignment of variable values of a specified type. In order to propagate or decide a
value of a variable, a trail element has to be added, and a new value has to be set
in the appropriate model. Figure 3.2 shows how to propagate a Boolean variable.
Adding a new decision is similar, except we call the decide() method instead of
the propagate() method.

Clausal and semantic propagations use the same representation on the trail.
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trail.propagate(Variable{var_ord, Variable::boolean}, reason, level);
trail.model<bool>(Variable::boolean).set_value(var_ord, true);

Figure 3.2: Propagation of the boolean variable var ord at the decision level level
with a reason clause reason.

They can be distinguished by querying the reason for propagation. The method
trail.reason() returns nullptr for all semantic propagations and a non-null
pointer to a clause for any clausal propagation.

The clause database is a list of asserted and learned clauses. Asserted clauses
are clauses from the input formula, and the backend should not modify them.
When a plugin detects a conflict, it returns a conflict clause which the core solver
subsequently analyzes. The result of this analysis is added to the learned clauses by
the core solver. Components can keep references to clauses in the database. Adding
new clauses does not invalidate references to any clause. However, references to
all clauses are invalidated when the solver restarts.

3.4 Theory plugins
All theory plugins extend the Theory class. The core solver has a set theory()
method, which creates a new plugin used by the core solver. The core solver works
with only one plugin. However, we implemented Theory combination to combine
several plugins, which is itself a Theory. It delegates method calls to all plugins.
Moreover, the propagate() method performs propagation to exhaustion (i.e., it
calls propagate() in all plugins until no new elements are added to the trail or
until a plugin detects a conflict).

The decide() method is called when an unassigned variable is selected by the
core solver to be decided. It is called in all plugins regardless of the type of the
variable. The plugin responsible for the selected variable decides a value in the
current solver trail.

Boolean plugin
The Bool theory class implements the Boolean constraint propagation. It is also
responsible for all Boolean variables. The default value used for all variables in
the decide() method is true. However, we also implemented the phase-saving [13]
heuristic, which caches values of boolean variables and uses the cached value in the
decide() method. It can be enabled by calling the set phase(Phase::cache)
method.
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Linear real arithmetic
The Linear arithmetic class implements the Linear real arithmetic (LRA) plu-
gin. The plugin itself consists of several smaller parts:

• Linear arithmetic: implements the system of watched constraints (Sec-
tion 2.5) to detect the unit and fully assigned constraints.

• Linear constraints: is a repository of normalized linear constraints. It
stores data of all linear constraints in the system. It also detects duplicates.
The Linear constraint class is a lightweight type containing a reference to
the data in this repository and a literal identifying the constraint.

• Bounds: is a map from rational variables to implied bounds Variable bounds
(Section 2.6). It also contains methods for deducing new bounds.

• Lra conflict analysis: implements the Fourier-Motzkin elimination and
procedures for explaining bound and disequality conflicts.

The numbers in Yaga are represented by the Rational class. This is a wrapper
class for two classes – Fraction and Long fraction. While the Fraction template
class can represent numbers of a limited precision, in particular as a ratio of two
instances of the template type, Long fraction employs the GMP library [1] which
allows for representation of rational numbers of unbounded precision.

To be efficient,Long fraction attempts to store the fraction as two 32-bit
integers. If either integer overflows, it switches to a representation from the GMP
library.

Both Fraction and Long fraction implement arithmetic operators to make
their instances easy to use, such as addition, subtraction, multiplication, division,
floor and ceil operations, as well as comparison operators.

New linear constraints are created by calling the constraint() method of
the Linear arithmetic class. This method creates a new Boolean variable if
the provided constraint is not in the system and adds it to the list of watched
constraints. The LRA plugin adds new constraints using this method only when
there is a bound or disequality conflict.

3.5 Events
Event listeners inherit from the base class Event listener. The core solver cur-
rently dispatches the following events:

• on init: called when the core solver starts a new check.
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• on variable resize: called when some variables are added or removed.

• on before backtrack: called before the solver backtracks.

• on learned clause: called when a new clause is learned and added to the
clause database.

• on conflict resolved: called for each clause resolved with a conflict clause.

• on restart: called after the solver restarts.

Heuristic functions
Heuristic functions extend the event listener interface. The Variable order class
additionally has a pick() method, which finds an unassigned variable to decide.
The variable order used by the heuristic is determined by its is before(a, b)
method, which should return true if the variable a should be decided before the
variable b. The core solver uses the is before() method in a semantic split
conflict to find the best literal to decide among the top-level literals in a conflict
clause (Section 2.2). The order of variables can dynamically change.

We implemented a generalization of the VSIDS heuristic [12] for MCSat in the
Generalized vsids class. It internally uses a d-ary heap to order all variables by
their score (Variable priority queue).

The Restart class is the interface for all restart strategies. It has only one
method shoud restart(), which is called when the core solver encounters a con-
flict. If it returns true, the solver restarts instead of backtracking. We implemented
a couple of restart strategies:

• No restart disables restarts.

• Luby restart uses the Luby sequence [11, 9] multiplied by an integer con-
stant (a parameter of the heuristic) to determine the number of conflicts
before a restart.

• Glucose restart implements a variant of the restart strategy used in the
Glucose SAT solver [5, 6] (Section 2.8).

Clause deletion and minimization are implemented in the Subsumption class.
Clause deletion does not have a specialized interface. Clauses are deleted in the
on restart() event handler method. Clause minimization is done explicitly by
calling the minimize() method with a learned clause. It uses self-subsuming
resolution (Section 2.8) to remove redundant literals from the learned clause.
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4 Evaluation

In this section, we evaluate Yaga on the quantifier-free Linear real arithmetic
(QF LRA) SMT-LIB benchmark [4] and compare it with the OpenSMT solver [2]
(a DPLL(T)-based solver).

We use a randomly selected sample (256 problems) with equal amounts of
satisfiable and unsatisfiable instances from the QF LRA category to evaluate the
experimental features (propagation of rational variables and derivation of bounds).
The final configuration of Yaga is evaluated on the whole benchmark. We use
a timeout of 1200 seconds in all experiments.

4.1 Rational variable propagation
It is common in some problems to have rational variables with only one allowed
value (e.g., there could be 0 ≤ x and x ≤ 0 on the trail or even x = 0). It might
be beneficial to prioritize these variables in the decide() method (Algorithm 1)
since decided variables could lead to more variable bounds and, thus, earlier con-
flict detection. We extended the LRA plugin and the variable order heuristic to
track these variables. The variable order heuristic (Section 2.8) has another heap
with rational variables whose bounds allow only one value. The variables in the
additional heap are ordered by the VSIDS score. All unassigned variables from
the new heap are decided before any other variable.

Figure 4.1 compares computation time with rational variable propagation (the
y-axis) and without it (the x-axis). We achieved a speed-up above 40% on satisfi-
able problems that did not time out. However, the heuristic did not work as well
on unsatisfiable inputs. Some new problems (mostly unsatisfiable) could not be
solved with this heuristic within the time limit of 20 minutes.

4.2 Derivation of new bounds
We tried deriving new bounds using Fourier-Motzkin elimination from the bounds
on the trail (Section 2.7). Stronger variable bounds help the LRA plugin with
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Figure 4.1: Evaluation of rational variable propagation.

deciding a proper value for a rational variable, and some conflicts may be discovered
earlier.

Figure 4.2 shows a comparison of computation time in seconds with bound
derivation (the y axis) and without it (the x axis). There are some problems
where bound derivation improved the computation time. The average number
of conflicts on problems that did not timeout was lower with bound derivation.
However, the overhead of computing new bounds outweighed any benefit from a
slightly lower number of conflicts, and the solver was, on average, slower with
bound derivation.

4.3 Comparison
Figure 4.3 shows a comparison of the computation time of Yaga and OpenSMT2 [2]
(a DPLL(T)-based solver) on the whole QF LRA SMT-LIB benchmark [4]. Yaga
solved 1429 problems within the 20 minute time limit. OpenSMT solved 1709
within the same time limit.
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Figure 4.2: Derivation of new bounds.
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Figure 4.3: Comparison of Yaga and OpenSMT on the whole SMT-LIB QF LRA
benchmark.
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5 Conclusion

We implemented an SMT solver Yaga based on the MCSat framework [7, 10] with
two plugins for Boolean variables and the theory of quantifier-free Linear real arith-
metic (LRA). The solver has an extensible interface that can be used for further
development of theory plugins and heuristics for the MCSat framework. We eval-
uated Yaga on the quantifier-free LRA category of the SMT-LIB benchmark [4],
and we compared it with a DPLL(T)-based SMT solver OpenSMT [2].
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