Stochastic Performance Logic Development

Documentation
Haas Frantisek Lacina Martin
frantisek.haas@gmail.com lacina.martin@gmail.com

Kotr¢ Jaroslav
kotrcj@gmail.com

March 20, 2013

Contents

IIntroductioﬂ

|1 Main project overviewl

Annotations

Info Object]
Scanningl

3.1 Getting complete Info
3.2 Knowing what to creata

Sampler Code

3.4.1 Class structuré
3.4.2 Dependency structurd
3.4.3 Compilation
4.4 Archivd . .o
?Command exec@
.6 File system organizatiod
b
4.3 Gitl .
4.4 S_ubversioi
1.5 Extension e
Executio
A Overviewl ... L.
2 Binarvlo
.3 Initializafioﬂ
A Structurd L oL L
5 Configuration

5.6 Sampling]
5.7 Secure shell

N 1O O OOk W W

© © oo oo

— = e e
W W W= OO O

14

E Stora

b.1

6.1.1 Identificatio

Measured datal . . .

6.1.2 Sample file format

6.1.3 Storagd . . .

6.1.4 LocK
2 Evaluation
2.1 Storagd ..o
2.2 Evaluation directory format|
2.3 Lock
6.3 Temporarvi
6.4 Remote accessl

|7 Annotation Evaluatio

Main entry class and usaga

7.2.1 Logical operation evaluation detail§
7.2.2 Comparison statistical evaluation detaily

7.1
7.2 Evaluation procesy .
|Z .3__Generating output] .

7.3.1
7.3.2

HTML outpu
XML outpu

7.4.2 Execution times graph support detaild

7.4.3 __Probability density plot support detaily.
7.4.4 The R Project invocatiod

&Using SPL as a librarj
R.1 InvokedExecution clasy L

8.2 InvokedExecutionConfiguration classi

Eclipse Plug-i
5.1 Source code repositor;l

.1.1 _ Directory layout of the Eclipse projectl

0.2 Requirements
0.3 Compilationl e
3.1 MWE2 Workflow related issuesl

4 _Package structure overview
.5 Binding to the Eclipse IDH
.6 Source code manipulation
0.6.1 Parsing annotations from the source codd

0.6.2 Writing modifications to the source codq

.7 Project COM&tiOE
.8 Basic GUI composition concepts]
9 Xtext usagd . . . L e
D.9.1 Xtext embedded editoﬂ
0.9.2 Content assist support]

i

........................... 49
........................... 50
...................... 50

.11.2 Annotation editor componentl L 50
P 51

.12.1 SPL Execution Viewl 52

.12.2 Invocation implementation detailsl 52
................................. 53

13.1 SPL Results Overview] 53

.13.2 Navigation in the resultsi 54

.13.3 The result details visual componentei 54

.13.4 Graph Dresentatioﬁ 55
&SPL configuration editingo 56
0.14.1 Tableeditord 56
0.14.2 Projects configuration editor§ 56

b.15 INT configuration editing, 57
0 Hudson Plug-i 58
0.1 Compilation from sourcd 58
0.1.1 Source code repositorvl 58

0.1.2 Directory layout of the projecd 58

0.1.3 Dependencied 59

0.1.4 Compilation 59

0.1.5 Importing Plug-in to the Eclipse IDEi 59

0.2 Implementation detaild 60
0.2.1 Basic information on Hudson plug-in developmentl 60

0.2.2 Description of classed, 61

0.2.3 HTTP access to the evaluation results] 62

hl Develogmend 64
1.1 _What to iﬁDrovel 64
1.2 List of used libraries and toog 66
1.3 Development timeline and responsibilitiesl 68
1.3.1 Coreproject]. 68

1.3.2 Case study project] 71

1.3.3 Eclipse plug-in project] L. 71

1.3.4 Hudson plug-in proiectl 73

il

Introduction

Stochastic Performance Logic project is a set of tools for measuring and comparison of
performance of Java code. This project is based on “Capturing Performance Assump-
tions using Stochastic Performance Logic” F.

The idea behind SPL paper is to reason about functions performance using performance
relations between them. These assumptions are declared in source files in form of Java
annotations. This makes it easier to keep these relations up to date.

This document contains development documentation describing implementation details of
the SPL Tools Framework. If you are looking for usage instructions, than refer to the
Stochastic Performance Logic User Manual documentt.

License agreements

Project is distributed under the 3-clause BSD license.

Copyright (c) 2012-2013, Frantisek Haas, Martin Lacina, Jaroslav Kotr¢
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

¢ Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

¢ Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

e Neither the name of the author nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

! The article “Capturing Performance Assumptions using Stochastic Performance Logic” can be found
on each of the following URLs:
http://dx.doi.org/10.1145/2188286.2188345
http://dl.acm.org/citation.cfm?id=2188345
http://d3s.mff.cuni.cz/publications/

2Stochastic Performance Logic User Manual download page http://sourceforge.net/projects/
spl-tools/files/documentation/

http://dx.doi.org/10.1145/2188286.2188345
http://dl.acm.org/citation.cfm?id=2188345
http://d3s.mff.cuni.cz/publications/
http://sourceforge.net/projects/spl-tools/files/documentation/
http://sourceforge.net/projects/spl-tools/files/documentation/

1. Main project overview

SPL Tools project consists of a command line utility, an Eclipse plugin and a Hudson plugin.
These tools are stored in separate repositories. The basic functionality is placed in the main
“code” repository and is used by both Eclipse and Hudson plug-in as a library.

The code repository is located on following URL:

git://git.code.sf.net/p/spl-tools/code

To compile and run the code Java Development Kit 1.7 (JDK?)E]E and Ant 1.8 or
higher is required. The code is built using ant targets. The most important targets are the

following:

ant - builds the code

ant dist - builds packed jar distribution

ant zip-dist - builds and packs jar and dependencies to zip file
ant doc - builds JavaDoc documentation

ant test-junit - builds and runs unit tests

ant case-study - downloads actual case study files and runs it
The structure of code repository follows classical conventions and is shown in following
diagram.

(d) .git (GIT folder)

(d) 1ib (folder for SPL library JAR files)

(d) src (various source files)

(d) |- examples (XML and INI examples)

(@) |- java (main Java source files)

(d) |- script (shell wrappers)

(@) |- test (test files)

(d) |- junit (unit tests)

(@) |- projects (integration tests, performed by dynamic junit tests)
(@ |- uml (documentation diagrams)

(d) |- xslt (xml to html evaluator transformation files)
(d) tools (various tools)

(=) .classpath (Project Java class path configuration file)
(=) .gitignore (GIT ignore file)

(=) .project (Eclipse file with project configuration)

(=) LICENSE.txt (SPL license file)

(=) SPLcodetemplates (Eclipse file)

(=) SPLformater (Eclipse file with formatting options)

(=) SPLsaveactions (Eclipse file)

To know_more details about development of Eclipse or Hudson plugin see ”Eclipse Plug—inl

on page @] and [Hudson Plug—inl on page bg|.

!Oracle JDK web page http://www.oracle.com/technetwork/java/javase/downloads/index.html
20penJDK web page http://openjdk.java.net/
3 Apache Ant web page http://ant.apache.org/

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/
http://ant.apache.org/

2. Annotations

This chapter describes structure of SPL annotation and the process how to obtain infor-
mations necessary for creating measurement code and running measurements. Also the
structure used for representing this informations is described here.

2.1 Structure

Annotations are used to describe what methods are measured, what is the input for them
and what performance relations should hold between them.

The SPL annotation declaration specifying the syntax follows

package cz.cuni.mff.spl;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import java.lang.annotation.ElementType;

@Target (ElementType .METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface SPL {
/** Formula. */
String[] formula() default {I};
/** Method aliases. */
String[] methods() default {};
/** Generator aliases. */
String[] generators() default {};

}
It has three parts:

methods
It defines which methods are measured. That includes the project and revision speci-
fication.

generators
It defines what objects are used to create input for measured methods. These objects
can be from different projects and revisions than the measured method.

formula
It defines performance relations between methods with specific generators that create
method input. There can be used methods and generators defined in the other two
parts of annotations or they can be defined right here.

The grammar used for writing annotations is described in detail in user part of the docu-
mentation in the chapter Annotations.

2.2 Parsing

Parsing single part of annotation is made by parser created by tool J avaCCE] . The parser is
generated from source Parser.jj in package cz.cuni.mff.spl.formula.parser to the same
package before project compilation. The main generated class for using parser is cz.cuni-
.mff.spl.formula.parser.Parser.

Objects from package cz.cuni.mff.spl.annotation are used for returning value of formula
specification and declaration of generator or method.

The parser requires the string to be passed as first parameter and an instance of class cz-
.cuni.mff.spl.formula.context.ParserContext as second parameter. The context should
be a clone of the context initialized from the project configuration. The parser uses it for
searching projects, revisions and machine. Parser itself modifies the context only by storing
problems occurred during parsing into it. The parser context is modified during formula
expansion by the by Expander when all generators and methods in the formula are stored
into the context.

Parser usage is very simple. Generator or method can be parsed with static following methods
according to the expected type of definition:

with alias
This means that the definition is in the form alias = definition and then those methods
are used:

» parseGeneratorAlias(String, ParserContext)
» parseMethodAlias(String, ParserContext)

without alias
The definition contains only the part definition without the alias = prefix. This parsing
feature used in Eclipse plug-in editors where alias definition parts are separated. Those
methods are then used:

» parseGeneratorDeclaration(String, ParserContext)
» parseMethodDeclaration(String, ParserContext)

The generator and method parsing runs only parser itself and can produce errors (not found
project or revision) placed to the parser context. Generator parsing can produce warn-
ings (generator declared as class in default package). Method parsing can not produce any
warning.

Whole formula is parsed by the static method:
« parseAndExpandFormula(String, ParserContext)

This method runs the parser first. Then the expansion for resolving variable names to values
and generating objects with concrete values is called on the structure created by the parser in
previous step. The expansion can produce errors (duplicate variable, not declared variable,
not found project or revision, not found alias, wrong number of sequence variables and their
values) and warnings (not used variable, conversion of real parameter to integer value), all
of them all placed into the parser context.

1JavaCC web page http://javacc.java.net/

http://javacc.java.net/

2.3 Formula expansion

The formula contains only variable names after it is parsed and the initial formula structure
is obtained, it contains no specific integer values yet. The class cz.cuni.mff.spl.formula-
.expander.Expander is used to process the variable names to concrete values. Expansion
is not used for parsing generator and method definitions because they contain no vari-
ables.

The Expander combines every value of every variable step by step and for every combination
of values traverse through the objects created by parser. It creates new formula objects with
these concrete values and joins them by conjunction.

To show it on example the Expander gets formula defined as:
for(i{1, 2} j{3, 4}) A[G](i) < BIG](j)
And transforms it to the expanded form:

A[G] (1) < BIG](3)

& A[G] (1) < B[G] (4)
& A[G](2) < BIGI(3)
& A[G](2) < B[G](4)

During expansion new objects are stored in the parser context in a set. They are compared
for equality and if there is already equal object it is used instead of the new one. That
cause that measurements represented by equal objects are measured only once. Even two
measurements written in a different way in the formula but with the same meaning will be
recognized as equal and measured only once for whole formula.

The Expander class contains only the main entry point for formula expansion. It pre-
pares the mapping of variable names to their values. Each object present in the formula is
responsible for creating their properly expanded copy.

The expanded formula instance contains no more references to variable names (instances
of the class cz.cuni.mff.spl.annotation.ParserVariable), it contains only variable values
(instances of the class cz.cuni.mff.spl.annotation.ExpandedVariable). Only expanded
formulas are processed further in the Framework.

2.4 Info Object

Object cz.cuni.mff.spl.annotation.Info is used for storing information gathered by SPL
scanner from project configuration and annotations of methods. It uses the other classes
from the package cz.cuni.mff.spl.annotation to represent every information necessary for
the measurement. The Info instances are used for exchanging data between different parts of
the framework and to preserve persistent configuration in the XML configuration file.

On the beginning of the SPL execution process the first Info class instance is deserialized
from the XML configuration file by the Castord library for XML serialization and deserial-
ization. The structure of the XML configuration file is described in detail in user part of the
documentation in the chapter XML configuration file.

2Castor library web page http://castor.codehaus.org/xml-framework.html

http://castor.codehaus.org/xml-framework.html

First it is necessary to know how to obtain the project with SPL annotations. The Info
created from the XML configuration is used during the creation of the binary for collecting
performance data to determine what needs to be created.

When the project code is built it is needed to find annotations. Scan patterns in the con-
figuration are used by scanner to specify which classes or packages are scanned for annota-
tions.

Parser is then called to parse found annotations. The parser context is initialized from
the Info object with projects and their revisions and the machine where measurement will
run. After parsing is done the created objects representing measurements with methods and
generators are stored again into the Info object.

The result Info contains data needed for checking out all necessary projects and their revi-
sions to generate measurement sampling binaries.

After measurement is done the informations in Info object are used by the formula evaluation
process to for statistical evaluation and creation of the measurement output fragments.

2.5 Scanning

This section describes scanning process that reads annotations stored in the annotated
project’s code. That’s an essential thing, as SPL annotations contain formulas that de-
scribe performance relations between various methods. Knowing that, Framework measures
methods referenced and evaluates formulas declared.

From the technical point of view, all information read and parsed from annotations is stored
inside Info object which was described in the previous chapter. This object combines con-
figuration declared in project’s configuration XML file with information acquired from SPL
annotations in the annotated project. Scanner’s task is to walk trough all classes on paths
specified in the XML configuration file for the annotated project and pass all found SPL
annotations to the parser. See [on page (] for more information about annotation
parsing.

The scanning process is backed by the Scanner class from cz.cuni.mff.spl.scanner.

2.5.1 Patterns

The Scanner expects, that all classes to be scanned are prepared on the class path either as
class files in a directory tree or in a jar file.

However scanner can be configured to scan only certain classes or packages. To accomplish
that scan pattern may be specified in the XML configuration file. By default all classes
found on class path are scanned for annotations.

Following scan patterns are supported:

“*” Scan everything found.

“package.*”
Scan all classes in the package but not the classes in the sub packages.

“package.**”
Scan all classes in package the package and also all classes in all sub packages.

“package.Class”
Scan just the class specified.

The scanning process less time and consumes less memory when the scan patterns are spec-
ified. The ideal situation occurs when the only scan patterns point to the classes with the
annotations.

Class listing

At first URLs that the class loader has specified are extracted and all jar files and directories
that these class paths point to are listed.

Then, all classes that can be found in these jar files and directories are compared to the scan
patterns specified in the project configuration and are listed in case of match.

This list of classes is prepared to be scanned for annotations.

It’s necessary to walk trough all classes on the class path and parse these classes by hand
because Java has no standard API which would provide list of all classes located on the
classpath.

Class scanning

The initialized URL class loader is used again to scan for annotations. All listed classes are
loaded using this class loader and scanned for SPL annotations.

If a SPL annotation is found inside the scanned class, than the annotation is processed by
the method processAnnotation which uses the annotation parser to acquire all definitions
and the result is saved into the Info object instance.

3. Sampler Creation

This chapter will describe the creation of a binary which is composed of the method to
be measured, the generator providing arguments for this method and our measuring code
that triggers and controls the sampling process. The purpose of such binary is to collect
performance data of the selected method. From now on this binary will be called as a
sampler.

All classes in this chapter are implicitly from the cz.cuni.mff.spl.deploy.build package.
This whole process is backed by the Build class.

3.1 Getting complete Info

The first step is to determine what needs to be created. To accomplish this the XML
configuration file is loaded. This file, apart from other things, contains instructions how and
where to obtain the code of the main revision (which is referenced as HEAD revision) of the

main project (which is referenced as THIS project). The XML file is loaded into instance of
class cz.cuni.mff.spl.annotation.Info. See [[nfo Object] on page B} for more details.
Based on the repository type specified the corresponding implementation to access such
type of repository is used and the HEAD’s code is checked out into a local directory.
File sisteé

See [Repository Accesg on page [L5] for more details on repository types and ||
prganization on page [14] for more details on file system organization.

The code is obtained but it’s not yet sure if there are source files or already built binaries. If
THIS project has build command specified it’s supposed the source files have been checked
out and the command is executed to produce binaries. Otherwise binaries are expected. See
[on page] for more details on build command execution.

Then, according to the class paths which are in fact Java class paths specified relatively
to the code’s root directory and according to the scan patterns the scanner is initialized.
The scanner enhances the Info object with information from the HEAD’s binaries.

This is performed by BuilderScanner class.

3.2 Knowing what to create

When the complete Info has been obtained there’s a list of all formulas, comparisons and
measurements that should be processed and evaluated. The statistical evaluation requires
that every measurement is performed and measured data are available.

Measurement of a single method references two revisions. The revision of the method to
be measured and the revision of the generator that will provide input arguments to the
measured method. These revisions may be identical or they may be different but come from
the same project (repository) or they may be totally different and origin in even different
projects (repositories).

Measurement can be uniquely identified based on the functions’ revisions it’s composed of.
This unique identification is utilized in the data storell. To determine which measurements
must be performed and which can be loaded the store is checked for measurement pre-
sence.

To get the complete list of already performed measurements the identification is created from
measurement properties and is checked against the store. However, there’s a difficulty in case
the revision’s identification in not absolutef and such revision must be at first resolved which
may take some additional time as the repository must be accessed.

The measurements that are not found are listed and samplers will be created for them.
All revisions referenced by these measurements are prepared in the same way the HEAD
revision has been.

This is performed by BuilderContext class.

3.3 Sampler details

Now that the dependencies for creation of all samplers have been prepared the retrieval of a
single sampler’s details for a single measurement will be described.

This is performed by Assembler class.

3.3.1 Reflection

To get more information two class loaders (one for the generator, one for the measured
method) are instantiated with the corresponding class paths to their dependencies. Classes
implementing the generator and the method will be loaded using their respective class loaders
and reflection will be used to get type information about these classes.

Reflection is used only to retrieve information about classes. It’s not used during measuring.
The necessary information acquired through reflection is used to determine if the referenced
generator is a static class and which particular method of the referenced SPL method should
be used for generator arguments as the code generation has to prepare proper type conver-
sions for the arguments.

3.3.2 Generator

The generator generates data of the following type:
Iterable<Object[]> data;

That said a single call of the generator creates data for multiple calls (Iterable<>) of a
function with possibly multiple arguments (Object[1).

The generator might be represented as a whole class, as a static function or as a member
function. To determine this the Info and mentioned reflection are used. In case the class

!That is useful in big projects where tens of measurements are present. When such projects advances and
new revisions are added only the measurements from new revisions must be performed, the measurements
from old revisions may be just loaded because the measuring was already performed for them.

2For example “master” or “HEAD” instead of full hash or revision number

kind is used all super classes and implemented interfaces are checked for interface match on
the specified generator data type. If the generator is of method kind (static or member) the
return type is checked for type match.

Few more already known details are needed to use the generator. Annotations enable passing
of some arguments to the generator. A single string might be passed to the generator
constructor. And unlimited number of integer arguments might be passed to the generator
static or member function. These arguments are parsed from annotations and are therefore
present in the Info object.

3.3.3 Method

The measured method may be a member or a static function.

The method’s arguments might be specified in the annotation but don’t have to. If the argu-
ments are not specified than the method’s name can’t be overloaded because it’s undecidable
which declaration should be used. If the arguments are specified the specified overloaded
variant is picked.

If the method is a member function a single string argument may be passed to the class’
constructor.

3.3.4 Example

Lets measure two sorting functions on integer arrays.

public class Method {
public static void sorti(int([] a) {
java.util.Arrays.sort(a);
}
public static void sort2(int[] a) {
java.util.Arrays.sort(a);

b
+

Now an integer array generator is needed. The important think to note is the type that
generate () returns. The data it returns have in this case three dimensions.

First dimension is the number of elements in the array list. Every element suffices a single
call on sort function.

Second dimension is the number of arguments the sort function takes, actually wrapped in
Object[]. In this case it’s a single argument, an integer array.

Third dimension is actually not interesting for SPL. It’s the size of the array to sort.

public class Generator {
Random rnd = new Random();
int calls;
int args;

public Generator(String calls_args) throws Exception {
String split[] = calls_args.split(";");

10

calls = Integer.valueOf (split[0]);
args Integer.valueOf (split[1]);

public ArrayList<Object[]> generate() {
ArrayList<Object[]> allCalls = new ArrayList<>();
for (int i = 0; i < calls; i++) {
int[] argument = new int[args];
for (int j = 0; j < args; j++) {
argument [i] = rnd.nextInt();
}
Object[] callArguments = new Object[] {argument};
allCalls.add(callArguments) ;
}

return allCalls;

Declaration of the formula follows. Interesting part here is the way arguments are passed to
the generator. Due to limits of Java annotations most arguments must be passed as strings
and later on parsed like in the Generator constructor. In this case generator will create data
for 30 calls and each call will sort an array of 1000 integers.

import cz.cuni.mff.spl.SPL;

public class Measurement {
@SPL(
generators = {
"generator=main.Generator('30;1000"')#generate()"

s

methods = {
"sortl=main.Method#sortl",
"sort2=main.Method#sort2"

1,

formula = {
"sortl[generator] < sort2[generator]"
)

void compareSorts() {2}

3.4 Sampler Code

To generate sampler code classes templates and Apache Velocity template framework is
used. The sampler is made out of three parts compiled separately. This separate compilation
is necessary due to class path conflicts, for the generator and the measured method may origin
in different revisions and have colliding dependencies. Therefore they might not be called
directly from the main part of the sampler but are called via generic interfaces.

11

This is performed by Code class.
This part is very tricky to implement due to some issues.

Code generation
There’s little support in Java for code generation on the level needed here. Essential in
our project is to have easily editable templates where values like class names, functions
and arguments are filled at run-time. Therefore Apache Velocity template library
has been picked.

Glue code
Another interesting thing is to create code that can combine functions from various
projects and revisions and keep return value’s and arguments’ types right. This would
not be that tough if reflection was used but due to performance issues it’s not.

To manage this a system of interfaces and class loaders is used. The generator and
method are essentially hidden behind generic interfaces. Implementations of these
interfaces are created and compiled against generator and method projects respectively.
That way one can work with the interface and use URL class loaders to provide the
correct implementation that wraps the original project’s code. When implementations
are loaded class loaders are linked to the class loader hierarchy.

Lesson learned from our case study is that context class loader must be set prior to
every call to generator class and method class because even the called code may use
class loader tricks.

3.4.1 Class structure

The structure of sampler is following:

IGenerator
This is the generic interface to access the generator. To use the generator specified
there must be an implementation of this interface.

Iterable<Object[]> newInstance() throws Throwable;

CGenerator
This is measurement specific implementation IGenerator. The overridden method in-
stantiates and returns generated data based on the generator’s type, kind and all
arguments specified.

IMethod
This is the generic method interface that has a function to instantiate the object to
call the measured method on and a function to call the measured method on the
instantiated object.

void newInstance() throws Throwable;
void call(Object[] arguments) throws Throwable;

CMethod
This is measurement specific implementation IMethod. The newInstance () initializes
the object if the kind of method is a member one or at least makes virtual machine to
load the class if the kind is static. The call(Object[] arguments) casts the array of
arguments to match the signature and calls it.

12

Measurement
This is the main class of the sampler. Its task is to load the generator and measured
method using explicit class loaders. The measurement is performed only via the IGen-
erator and IMethod interfaces. The implementation is loaded from specified folders
where the actual implementation is located. When the classes are loaded next task
of this class is to perform warm-up and measuring based on parameters specified and
store the measured data.

3.4.2 Dependency structure

Apart from the generated classes there’s a structure of dependencies. These dependencies
are placed in directories named corresponding to their purpose starting with “generatorCP”
and “methodCP” and numbered incrementally to avoid collisions. However, their creation
and usage is the same for both.

These dependency directories and their content is based solely on class paths specified in
the configuration XML and files located on these path inside the revision’s code. There
might be a class folder or a jar file on the class path. In both cases a directory is created
and the content of the folder or the jar file is copied inside the directory.

3.4.3 Compilation

Compilation is handled with Java built in compiler. Java Development Kid is required. The
generator part, the method part and the main sampling part are compiled separately.

Compilation functions are in BuildUtils class.

3.4.4 Archive

For easier distribution and transfer all generated classes and dependencies in the sampler
directory are packed into a zip archive.

13

3.5 Command execution

The project’s build command is expected to be simple and cross platform. Java execution
mechanism executes only bare binaries on the system’s or user’s path. But build command
is usually a shell script therefore it’s necessary to invoke it inside the platform’s specific

shell.

Windows
The command is invoked in the Command Prompt.

cmd /c command

Linux
The command is invoked in the Bash.

/bin/bash -c¢ command

Other
On other platform standard shell is expected to be present.

/bin/sh -c command

Configuration
If any of these settings does not satisfy project’s needs it’s possible to switch off guessing
of the platform’s shell. In this case the specified build command must itself invoke shell
binary and the command inside it.

command

3.6 File system organization

The whole build process resides in a single output directory. There’s stored an Info object
prior to the build process and post the build process. There is also separate directory for
revisions’ source code and generated sampling code.

In the source code folder there’s a directory for each revision’s code. There are also cache
directories for cloned repositories so they can be cloned once and afterwards accessed lo-
cally.

In the generated code folder there’s a directory for each created sampler.

14

4. Repository Access

This framework supports access to code from multiple kind of sources. There’s support for
Git repositories, Subversion repositories and local directories.

Implementation for access to code stored in repositories is in cz.cuni.mff.spl.deploy.-
build.vcs package.

4.1 Interface

The generic interface IRepository has a single method:
String checkout(String what, File where) throws VcsCheckoutException;

The semantic of this function is to check out specified revision “what” to the “where” direc-
tory and return permanent identification of the checked out revision.

Some version control systems allow to reference revisions with non-permanent identifica-
tions (e.g. “master”, “remote/mybranch”, “HEAD”, etc.) and these aliases are not suitable
for long term storage of measurements because their semantic may change in time. There-
fore it’s needed that when revisions with these aliases are checked out also the permanent
identification is resolved so the measurement can be stored.

The format of argument “what” is specific for every class implementing the interface.

4.2 Factory

To call the mentioned function to check out code the IRepository object must be at first
obtained. There is a class RepositoryFactory.java that has method for obtaining such
correct object:

IRepository parse(
String type, String url, Map<String, String> values,
File xml, File cache, InteractiveInterface interactive)
throws VcsParseException

Description of arguments:

type
This argument is a type of the repository. There are four possible values {git, sub-
version, source, sourceRelative}. These values come from RepositoryFactory.Re-
positoryType enumeration and are parsed to this enumeration. Based on this value
corresponding implementation of IRepository is picked.

url This argument specifies location of the repository. In case the repository type is git the
URL is a location of the repository. Same goes for subversion. In case the repository
type is source the url is expected to be an absolute path to the code directory. In
case the repository type is sourceRelative the url is expected to be a path to the code
directory relative to XML configuration file.

15

values
These are optional configuration values loaded from INI configuration. Semantic of
these values is specific to each repository implementation. In case of git and subversion
it may contain further credentials to access private repositories where log in is required.

xml XML configuration file location.

cache
This is temporary cache directory that repository implementation may use to store
temporary data. Gt for example at first clones remote directory there so further work
is performed locally only.

interactive
This is optional argument. If some interaction is needed this is the interface to perform
it trough.

4.3 Git

Git implementation is based on JGit i library from Eclipse project. JGit is a pure Java
implementation of Git. It supports access to public or private repositories using no au-
thentication at all, interactive password authentication, key authentication or interactive
pass-phrase key authentication.

Unfortunately in some repositories and on some revisions there has been problem using the
JGit library. It seems that some chain of commands which is perfectly valid and correct in
original Git implementation is not suitable for JGit. This is solved with fall-back to system
git binary if such is present. This fall-back is seamless. However only public repositories are
supported in this fall-back mode.

The IRepository is in Git class and the fall-back implementation in GitSystem class.

4.4 Subversion

Subversion implementation is based on SVNKit B library. This is also pure Java library.
The implementation supports access to public or private repositories using no authentication
at all, interactive password authentication, key authentication or interactive pass-phrase key
authentication.

In this case there has been no need for any fall-back mechanism.

4.5 Extension

To extend the framework with another version system few steps must be accomplished.

o Implement another IRepository class.

1JGit library web page http://www.eclipse.org/jgit/
2SVNK:it library web page http://svnkit.com/

16

http://www.eclipse.org/jgit/
http://svnkit.com/

Add its type to RepositoryFactory.RepositoryType and add condition to the
method parse(...) of RepositoryFactory so the new type will be parsed to the
new class.

If further information such as login credentials are needed add section to cz.cuni.mff-
.spl.configuration.SplAccessConfiguration.

17

5. Execution

This chapter describes the process of execution prepared samplers and collecting data. Ex-
ecution is handled by a forked server process. Framework controls the execution via client
classes that communicate with the server.

cz.cuni.mff.spl.deploy.execution.server
This package contains server classes that are packed (together with few other depen-
dencies) and forked on the target machine of execution.

cz.cuni.mff.spl.deploy.execution.run
This package contains client interface for deploying and controlling the server.

5.1 Overview

There are some good reasons to control execution by a new process.

o It’s easier to implement execution on remote machines because samplers are always
controlled by local process. That means easier logging, troubleshooting and killing in
case of timeout.

e More code can be shared in local and remote execution implementation.

« Remote execution may be started in such way that two server will never run at the
same time. Otherwise the precision of measured data could be harmed.

o In case of remote execution if a connection is lost the server can still go on and results
can be retrieved after the connection has been established again.

Server executes samplers in batches. That is sufficient for this purpose because all samplers
are created at once and only once per run. It also makes the process simpler.

5.2 Binary

Binary of the server is not prepared by a build system. It’s packed into a jar file at run-time.
Standard classes are used for that. This sort of packing makes testing and running simpler
and more flexible because it’s not tied to any sort of build system.

5.3 Initialization

Client interface follows few steps to make the server running.

client
At first a target machine (local or remote) and a path where to start the server must
be known.

client
Unique identification is generated for the server and server’s binary is named using the
identification and is copied into the destination path. The unique server name is used

18

to avoid collisions if two servers are being started concurrently in the same location.
When the binary is successfully copied it’s started.

server
The very first thing server does is it tries to acquire a file lock on well known file to
make sure there’s no other server running. If lock is successfully acquired success status
is returned via standard output to the client and output and error streams to client
are closed. Otherwise failure status is returned and server is shut down.

client
If failure status has been reported client tries to restart the server process in regular
intervals until success status is received.
client
After server has been successfully started samplers and configuration is copied to the
server’s directory named using the unique identification. Configuration file is described
below. When all samplers and configuration is successfully copied a start file is created.
server

Server waits until detects start file. With file detected the configuration is read execu-
tion started on samplers one by one.

Configuration file contains following values.

Job identification
This number identifies the job and determines execution order. Server uses this number
as a name for the job’s directory.

Archive name
Name of the ZIP archive that contains sampling code. Content is extracted to the
job’s directory.

Command
Command that’s used to execute the sampling code.

Timeout
Time in seconds how long execute may take until it’s killed and marked unsuccessful.

These values are Base64 encoded and (different) entries are separated by a new line .

5.4 Structure

Following diagram describes the file system structure that execution server uses.

(=) .spl-server-lock (lock all servers compete for)

(=) #.jar (server binary)

(d) #

(=) |- data (configuration of samplers)

(=) |- out (std out of server)

(=) |- err (std err of server)

(=) |- start (for server - samplers ready, start measuring)
(=) |- stop (for server - shut down)

(=) |- finished (for client - server shut down)

19

(=) |- e.zip (sampler packed in archive)

@ I-oe (sampler unpacked according to configuration)
|- C...) (sampler files and directories)
|
=) |- result (samples measured)
=) |- out (std out of sampler)
) |- err (std err of sampler)
) |- log (troubles starting sampler)
=) |- start (for client - sampling started) |
=) |- success (for client - successfully finished)
) |- timeout (for client - killed, timeout exceeded)
=) |- error (for client - error occurred)

- unique id of server, multiple different may be present
@ - id of sampler, multiple different may be present

5.5 Configuration

Configuration of samplers contains following values for each sampler:

Identification
Must be unique and be a valid directory name.

Archive name
Must reference sampler archive file.

Command
Command to execute sampler with.

Timeout
Timeout in seconds when to kill the sampler.

These values are listed line by line. Every four lines values for another sampler start. All

values are Base64 encoded.

5.6 Sampling

When server has started measuring client retrieves information about status of samplers via
checking existence of files marking sampler progress or result and checking files marking

server status shown in the structure description.

The only further interaction possible is creation of stop file which makes server to stop
measuring earlier and shut down. This is triggered in case of interruption on the thread

controlling execution.

When all samplers are measured the server lock is released and server exits.

20

5.7 Secure shell

For remote execution file access and command execution is processed via secure shell. Im-
plementation is based on JSch i library.

1JSch library web page http://http://www.jcraft.com/jsch/

21

http://http://www.jcraft.com/jsch/

6. Store

Data storage of the framework follows a strict structure. The organization is managed by
classes placed in cz.cuni.mff.spl.deploy.store package.

Store is implemented for concurrent access. Directories that may suffer from race conditions
are protected via lock files named “.spl-lock”. These files are acquired for single operations
only.

6.1 Measured data

This section contains details regarding persistence of the measured sample data. The sample
data are stored in the folder named measurement.

6.1.1 Identification

Every measurement sample must be uniquely identified.
This identification is composed of:
e Method identification that is internally composed of:
— Method canonical name
— Method constructor initialization arguments
— Method revision
* Project alias.
* Revision permanent identification
o Generator identification that is internally composed of:
— Generator class canonical name
— Generator constructor initialization arguments
— Generator parameters
— Generator revision
* Project alias.
* Revision permanent identification

This identification is constructed using cz.cuni.mff.spl.deploy.build.Sampleldentifica-
tion class.

6.1.2 Sample file format

Measured data created by samplers are stored in human readable plain text format.

They follow this format:

22

o First line of the file is a serialized identification of a sampler. The identification is
preceded with “#” character to signalize it’s a commentary not a sampled time value.

o Next lines are properties set by the sampling code. These lines start also with “#”
then continue with a name of the property followed with “=" and end with the value
of the property.

o After the property section there’s is a special line “#begin” that marks start of the
data section.

» Data section contains measured values of the method in nanoseconds. There’s a single
value per line. This section ends with special line “#end” and that is also the end of
the data file.

Example of sample file follows.

#...identification...
#date=Mar 6, 2013 4:06:44 AM
#warmup=359

#count=555

#begin

43667794

52970600

42707108

36247536

#end
6.1.3 Storage

In a store all measurements are placed into a single directory usually located in the root of
the store directory and named measurement.

This directory is organized into sort of hash table. Sample file content is stored as a file
named with hash of it’s identification followed by number of already existing files with the
same name. This solves hash collisions.

Prior to saving new measurement there is a check if the measurement is not already present.
All files with colliding hash must be opened and their first line must be read and com-
pared.

Store is not designed to support removal of individual sample files. In case a file is removed
only if its name is colliding with other troubles may arise. These files would look like
“id.0.dat”, “id.1.dat”, “id.2.dat” and so on. If a file removed is somewhere inside this chain
all following files will be as if invisible.

6.1.4 Lock

The directory containing measurements is locked if a file is being saved, loaded or its existence
is being checked.

23

6.2 Evaluation

6.2.1 Storage

Evaluation is composed of multiple files therefore there’s always created an independent
directory for each evaluation. These directories are placed into the directory that is located in
the root of the store directory and named evaluation. Single evaluation directory is named
run-evaluate-# where “#” is number of previously created evaluation directories.

6.2.2 Evaluation directory format

Layout of the evaluation directory is unknown to the store and is created by evaluation
process.

6.2.3 Lock

The directory containing evaluation directories is locked if a new evaluation directory is being
created.

6.3 Temporary

There is also need for temporary files as for example noted in the [Eampler Creationl on page
E] chapter. Temporary directories are lock protected, for otherwise other instances of the
framework could purge them if they were not locked.

Every temporary file created is placed into its special directory so it can be locked too.

6.4 Remote access

To enable access to measured or evaluated results on remote machines there is support for
HTTP protocol. This requires that local store implementation index directories so their
content can be listed remotely. This must be done due lack of remote directory listing
support of HTTP protocol.

13

Directory indexes are implemented as special files of well known name “.spl-index” that

contains Base64 encoded file names of these directories.

For faster access measurement directory contains slightly improved index where not only
encoded file names are listed but also full identifications.

These indexes are checked and recomputed every time framework initializes store direc-
tory.

Example of simple “spl-index” file with only encoded file names listed.

bSOOMWEyOWYyOC4wLmhObWw= ~
bS1kMWRhNz(Q2Zi4wLmhObWw= ~

24

Example of cache “spl-index” file with encoded sample identifications and file names listed.

idl m-02ac6b50.0.dat ~
id2 m-06112751.0.dat ~

25

7. Annotation Evaluation

This chapter describes implementation of annotation evaluation part of the Framework with
the main focus on evaluation of SPL formulas.

The implementation is located in package cz.cuni.mff.spl.evaluator and its subpack-
ages.

7.1 Main entry class and usage

Evaluation entry class is cz.cuni.mff.spl.evaluator.Evaluator and its method evaluate
with following signature.

public static void evaluate(
ConfigurationBundle
configuration,
Info
evaluationContext,
MeasurementSampleProvider
measurementSampleProvider,
IStore.IStoreDirectory
outputStoreDirectory,
File
temporaryDirectory
)
Valid call to this method has to specify specify all arguments:

ConfigurationBundle configuration
The configuration which is to be used for the evaluation. Note that evaluation does
not expect, that configuration details about access to remote machines are part of
configuration as the evaluation works locally.

Info evaluationContext
The instance of Info class with formulas to evaluate.

MeasurementSampleProvider measurementSampleProvider
The instance of class implementing this interface. It provides mapping of instances
of class cz.cuni.mff.spl.annotation.Measurement to instances of class cz.cuni-
.mff.spl.evaluator.statistics.MeasurementSample. Implementation used in the
Framework is cz.cuni.mff.spl.evaluator.input.CachingMeasurementSamplePro-
vider.

IStore.IStoreDirectory outputStoreDirectory
The instance of writeable folder abstraction used by Framework which is used to save
files generated during evaluation.

File temporaryDirectory
The directory which can be used by evaluation to store temporary files.

Two structures are created from values specified in evaluator part of the configuration bundle
before the evaluation process is started:

26

o The statistical values checker which is used for statistical evaluation and validation of
measured values.

This checker is represented by the interface cz.cuni.mff.spl.evaluator.statistics-
.StatisticValueChecker and currently used implementation is the class cz.cuni-
.mff.spl.evaluator.statistics.StatisticValueCheckerImpl.

o The evaluation output implementation represented by interface cz.cuni.mff.spl.eva-
luator.output.EvaluatorOutput.

Currently used implementation is class cz.cuni.mff.spl.evaluator.output.Evaluator-
OutputAggregator which serves as container for variable number of the Evalua-
torOutput implementations (HTTP, XML, graphs) which are dynamically created
according to values specified in evaluator part of configuration bundle.

The evaluation process starts after then and is described in the next section.

7.2 Evaluation process

The basic idea of the evaluation processing:

1. Iterate over all annotations in context and for each of them iterate over all its formulas
and process them one by one.

2. As formula is is a tree composed of expressions in inner nodes and comparisons in
leaves:

(a) Expression node Evaluate sub nodes and then create evaluation result for node.

(b) Comparison node Evaluate comparison using statistical t-test and create com-
parison evaluation result.

3. When evaluation is finished for one evaluated item (annotation, formula or comparison)
then it is send immediately to the output.

The evaluation of formulas as described above is located in class cz.cuni.mff.spl.evaluator
.EvaluatorImpl.

Comparison node evaluation uses statistical t—testE], which utilizes p-value from statistical
value checker to decide, whether comparison is satisfied or not.

7.2.1 Logical operation evaluation details

The expression node evaluation uses three-state logic by Kleene definitionB. This evaluation
reflects situations when some measurements have failed or don’t have enough measured data
(t-test needs at least two samples). The logical values representation is defined in enumera-
tion cz.cuni.mff.spl.evaluator.output.results.StatisticalResult and values are named
OK, FAILED and NOT_COMPUTED. Method combine of class StatisticalResult takes
logical operation representation from enumeration in cz.cuni.mff.spl.annotation.Operator

IStudent’s t-test on Wikipedia http://en.wikipedia.org/wiki/T-test
2Three state Kleene logic http://en.wikipedia.org/wiki/Three-valued_logic#Kleene_logic

27

http://en.wikipedia.org/wiki/T-test
http://en.wikipedia.org/wiki/Three-valued_logic#Kleene_logic

and two instances of StatisticalResult as operands and evaluates the logical operation rep-
resented by operator as defined in following truth tables (the logical operation has operator
in a row as left argument and operator in a column as right argument).

row AND column OK FAILED | NOT COMPUTED
OK OK FAILED | NOT COMPUTED
FAILED FAILED FAILED | FAILED

NOT_ COMPUTED | NOT COMPUTED | FAILED | NOT COMPUTED

Table 7.1: AND logical operation in Kleene three-state logic

row OR column OK | FAILED NOT_ COMPUTED
OK OK | OK OK

FAILED OK | FAILED NOT COMPUTED
NOT_ COMPUTED | OK | NOT COMPUTED | NOT COMPUTED

Table 7.2: OR logical operation in Kleene three-state logic

row — column OK | FAILED NOT_ COMPUTED
OK OK | FAILED NOT COMPUTED
FAILED OK | OK OK
NOT_COMPUTED | OK | NOT COMPUTED | NOT COMPUTED

Table 7.3: Implication logical operation in Kleene three-state logic

Note: NOT logical operation declaration is not described as it is not supported by SPL
grammar. It can be found on referenced Wikipedia page

7.2.2 Comparison statistical evaluation details

Comparison evaluation uses the Apache Commons Mathf library.

The comparison evaluation implementation is in the class cz.cuni.mff.spl.evaluator.statis-
tics.ComparisonEvaluator. It uses class org.apache.commons.math3.stat.inference-
.TTest to run the t-test on provided comparison.

See the t-test method Javadod for its usage instructions.

Most important part is the one for testing whether one sample is lower than the other. It is
necessary to check first if it is valid for the means and if so then following two methods are
used:

3 Apache Commons Math library http://commons.apache.org/proper/commons-math/

4 double TTest.tTest(...)

http://commons.apache.org/proper/commons-math//apidocs/org/apache/commons/math3/
stat/inference/TTest.html#tTest}28o0rg.apache.commons.math3.stat.descriptive.
StatisticalSummary, %20org.apache.commons.math3.stat.descriptive.StatisticalSummary’29

boolean TTest.tTest(...)

http://commons.apache.org/proper/commons-math//apidocs/org/apache/commons/math3/
stat/inference/TTest.html#tTest),280rg.apache.commons.math3.stat.descriptive.
StatisticalSummary, %20org.apache.commons.math3.stat.descriptive.StatisticalSummary,
%20double’,29

28

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math//apidocs/org/apache/commons/math3/stat/inference/TTest.html#tTest%28org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20org.apache.commons.math3.stat.descriptive.StatisticalSummary%29
http://commons.apache.org/proper/commons-math//apidocs/org/apache/commons/math3/stat/inference/TTest.html#tTest%28org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20org.apache.commons.math3.stat.descriptive.StatisticalSummary%29
http://commons.apache.org/proper/commons-math//apidocs/org/apache/commons/math3/stat/inference/TTest.html#tTest%28org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20org.apache.commons.math3.stat.descriptive.StatisticalSummary%29
http://commons.apache.org/proper/commons-math//apidocs/org/apache/commons/math3/stat/inference/TTest.html#tTest%28org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20double%29
http://commons.apache.org/proper/commons-math//apidocs/org/apache/commons/math3/stat/inference/TTest.html#tTest%28org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20double%29
http://commons.apache.org/proper/commons-math//apidocs/org/apache/commons/math3/stat/inference/TTest.html#tTest%28org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20double%29
http://commons.apache.org/proper/commons-math//apidocs/org/apache/commons/math3/stat/inference/TTest.html#tTest%28org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20org.apache.commons.math3.stat.descriptive.StatisticalSummary,%20double%29

double TTest.tTest(StatisticalSummary sampleStatsl, StatisticalSummary sam-
pleStats2)
The returned p-value has to divided by two according to the Javadoc documentation.

boolean TTest.tTest(StatisticalSummary sampleStats1, StatisticalSummary sam-
pleStats2, double alpha)
The parameter alfa has to be equal to the limit p-value (which is obtained from sta-
tistical value checker) multiplied by two according to the Javadoc documentation.

When the left mean is not lower than the right one, than the comparison is definitely not
satisfied and the p-value in the result is set to 0.

Calls to the tTest methods listed above in case of the equality check is standard - no
multiplication or division by two.

7.3 Generating output

Evaluation output generation is integrated into evaluation process as described in the previ-
ous section. This integration allows to generate output continuously as the evaluation result
parts for evaluated items (annotation, formula, comparison or measurement sample).

The evaluation output is represented bythe interface cz.cuni.mff.spl.evaluator.output-
.EvaluatorOutput.

public interface EvaluatorOutput {

void init(
ConfigurationBundle configuration,
Info context,
StatisticValueChecker statisticValueChecker,
IStoreDirectory outputStoreDirectory
) throws OutputNotInitializedException;

void generateMeasurementOutput(
MeasurementSample measurementSample

);

void generateComparisonQutput(
ComparisonEvaluationResult result

);

void generateFormulaOutput (
FormulaEvaluationResult formulaEvaluationResult

);

void generateAnnotationOutput(
AnnotationEvaluationResult annotationEvaluationResult

);

void close();

29

}
The description of the interface methods:

init SPL evaluator calls this method to initialize the evaluator output implementation with
runtime configuration, evaluated context, statistical value checker and output directory.
The output implementation can throw exception OutputNotInitializedException
which is defined in the EvaluatorOutput interface.

generateMeasurementOutput
This method is called after creating comparison evaluation result with the measure-
ment samples compared in it (instances of class cz.cuni.mff.spl.evaluator.statistics-
.MeasurementSample).

generateComparisonOutput
This method is called with created comparison evaluation result (instance of class
ComparisonEvaluationResult).

generateFormulaOutput
This method is called with created formula evaluation result (instance of class For-
mulaEvaluationResult).

generateAnnotationOutput
This method is called with created annotation evaluation result (instance of class An-
notationEvaluationResult).

close
SPL evaluator calls this method when evaluation is finished.

Note: Classes ComparisonFEvaluationResult, FormulaFEvaluationResult and An-
notation EvaluationResult are located in package cz.cuni.mff.spl.evaluator.output-
.results.

The evaluation output implementation has to implement all methods which are described
above, but it can process only those calls to generate methods which are necessary in the
specific output implementation. For example graph generation output handles only calls to
the methods generateMeasurementOutput and generateComparisonOutput as only
the measurement and comparison evaluation has graphs in the output.

7.3.1 HTML output

The implementation for generating HTML report about SPL evaluation results is located in
package cz.cuni.mff.spl.evaluator.output.impl.html2.

HTML report is the most complex currently implemented type of evaluation output. It uses
XSLTY for the HTML pages creation.

Main class Html2EvaluatorOutput collects evaluation result objects produced by evalu-
ation process and stores internally for HTML creation. HTML files are produced when the
Html2EvaluatorOutput instance method close is called, because we need to prepare all
file names to be able to produce links between created HTML pages.

SXSLT 2.0 specification http://www.w3.org/TR/xs1t20/

30

http://www.w3.org/TR/xslt20/

Used XSLT templates are located in project folder /src/xslt/ in package spl.xslt. Those
files are compiled to separate JAR file with name SPL-xslt-resources.jar to allow easy
modifications of HTML output templates.

Important files in package spl.xslt - those files have to be present in order to generate HIT'ML
output:

main.xsl
Main XSLT template which is used by HTML output to generate all HTML pages.
Type of page is determined by name of root element of transformed XML file. This
template is invoked once for each generated page with created transformation descriptor
(instance of *ResultDescriptor) serialized to XML.

The XSLT transformation is performed for every created HTML file.

copy-to-output.txt
List of files from this package, which should be copied to the output directory (such as
CSS files, images or JavaScript files). Each line not starting with character # is name
of one file to copy to the HTML output directory.

Important notes about main.xsl

main.xsl is a simple XSLT script.
It defines following two parameters:

CURRENT__TIME
Sets the time of the HTML output generation which is be used in the transformation
template.

BACKLINK
Sets the target file for the back link shown in the page header.

Then there are includes with special protocol with name spl which allows to include other
templates which are located in the same location as main.xsl (i.e. on JVM class path in
package spl.xslt). No sub-folder/sub-package location is supported. Those included scripts
describe transformation of specific result descriptor XML files which are transformed with
main.xsl.

The only template rule in this script matches root node of document. It loads shared doc-
ument with special name ?shared-info.xml using protocol spl. This load is here to allow
sharing of stable context information between calls to XSLT template. This shared document
contains evaluated context information, build and evaluation configuration and mapping of
HTML page names to evaluated objects to allow linking pages. The XSLT transformation
is run on modified XML document, which is created by merging original document with the
shared document while preserving root node name.

How to modify used XSLT templates

There are two options how to modify HT'ML output templates. You can modify them directly
in code folder and recompile whole framework or you can unpack SPL-xslt-resources.jar,
modify templates and update them in SPL-xslt-resources.jar (as JAR file is just ZIP
archive).

31

7.3.2 XML output

The implementation for generating XML file describing cz.cuni.mff.spl.evaluator.output-
.results.ResultData is located in package cz.cuni.mff.spl.evaluator.output.impl.xml.

The class XmlEvaluatorOutput is implementation of EvaluatorOutput interface and it
just collects evaluation result objects produced by the evaluation process and stores them
to the internal instance of ResultData which is serialized to the output file with name
spl-result.xml when the XmlEvaluatorOutput instance method close is called.

7.3.3 Graph output

The implementation for generating graphs for measurements and comparisons is located in
package cz.cuni.mff.spl.evaluator.output.impl.graphs.

The implementation has two classes. The main implementation class is GraphEvalua-
torOutput and support class GraphKeyFactory.

The class GraphEvaluatorOutput is implementation of EvaluatorOutput interface.
Types of generated graphs are specified in the evaluation configuration. This class provides
access to mapping of generated graphs to keys produces by class GraphKeyFactory.

Any evaluation output which needs access to generated graphs has to have access to instance
of cz.cuni.mff.spl.evaluator.output.BasicOutputFileMapping provided from the in-
stance of GraphEvaluatorOutput and has to be called after this instance (otherwise there
would not be mapping entries for the processed measurement or comparison). User of the
BasicOutputFileMapping instance gets proper key for mapped object and graph type via
call to GraphKeyFactory.createGraphKey.

For more details about generated graph types see the next section.

7.4 Graph generation support

Graph generation support is located in the package cz.cuni.mff.spl.evaluator.graphs-
.GraphDefinition. It uses J FreeChart! library.

Support for following graph types is implemented:

histogram
Histogram for collection of measurements.

execution times graph
Graph describing the measured times. A dot is plotted for every measured sample
value.

probability density graph
Graph which shows probability density. Adds normal density comparison to plot when
created for one measurement sample (normal density is computed with mean and
standard deviation of measured sample).

6 JFreeChart library web page http://www.jfree.org/jfreechart/

32

http://www.jfree.org/jfreechart/

Graph of any type from the list is generated by the definition described with class GraphDef-
inition. This graph definition contains graph type and measured data clip type (none, sigma
or quantile) with parameters.

Measured data clip type:

none
All measured samples should be plotted.

sigma
Measured samples that are farther from the mean than the sigma (standard deviation)
multiplied with specified multiplier are removed. Number of this removal operation
iterations can be specified as second parameter - specifying higher value can lead to
more stable graphs as the mean and the standard deviation are computed from current
measurement dataset.

quantile
Measurement samples that are lower specified lower percentile or higher that specified
upper percentile of measurement dataset are removed. Lower and upper percentile is
specified as double number in the interval [0,1].

The graph generation factory class is GraphProvider. Its constructor needs instance of
evaluation configuration and working directory. It has two methods:

JFreeChart createChartFor(GraphDefinition graphDefinition, MeasurementSam-
pleDescriptor... samples)
Creates chart instance for specified graph definition and measurement samples.

byte[] createChartPNGFor(GraphDefinition graphDefinition, MeasurementSam-
pleDescriptor... samples)
Creates chart instance for specified graph definition and measurement samples and en-
codes it to byte array in PNG format. Image dimensions are configured in evaluation
output configuration, the default dimensions are 800 x 600 pixel.

Those methods can throw the cz.cuni.mff.spl.evaluator.input.MeasurementDataPro-
vider.MeasurementDatalNotFoundException when measurement data were not found
for any samples.

The details for graph types implementations are described in the following text. Each im-
plementation provides one method to get JFreeChart instance of graph and one method
to get byte array with encoded plot PNG image.

33

7.4.1 Histogram support details

The histogram creation implementation is in class HistogramCreator. It can be configured
with minimum and maximum number of bins that can be shown in the plot. Default bin
count limits are 100 and 10000.

The actual number of bins that will be plotted to plot is calculated by the static method
int HistogramCreator.calculateBinCount(double[] data, int minimumHistogram-
BinCount, int maximumHistogramBinCount). This method tries to determine num-
ber of bins according to the algorithm described below and if it does not fit into requested
range, than it is set to the closest value in the range.

Algorithm to determine the estimated bin count for histogram:
Source: http://www.ehow.com/how_8485512_determine-bin-width-histogram.html

1. Calculate the value of the cube root of the number of data points that will make up
your histogram.

For example, if you are making a histogram of the height of 200 people, you would take
the cube root of 200, which is 5.848.

2. Take the inverse of the value you just calculated.
The inverse of 5.848 is 1/5.848 = 0.171.

3. Multiply your new value by the standard deviation (s) of your data set. The standard
deviation is a measure of the amount of variation in a series of numbers.

If the standard deviation of your height data was 2.8 inches, you would calculate
(2.8)(0.171) = 0.479.

4. Multiply the number you just derived by 3.49. The value 3.49 is a constant derived
from statistical theory and the result of this calculation is the bin width you should
use to construct a histogram of your data.

In the case of the height example, you would calculate (3.49)(0.479) = 1.7 inches. This
means that, if your lowest height was (for example) 5 feet, your first bin would span 5
feet to 5 feet 1.7 inches. The height of the column for this bin would depend on how
many of your 200 measured heights were within this range. The next bin would be from
5 feet 1.7 inches to 5 feet 3.4 inches, and so on.

Histogram (all samples)

Figure 7.1: Histogram graph example

34

http://www.ehow.com/how_8485512_determine-bin-width-histogram.html

7.4.2 Execution times graph support details

The time diagram creation implementation is in class TimeGraphCreator. It has no
special configuration options and it just plots execution times.

Time diagram (quantile clipped samples, 1,0 % - 99,0 %)

(500)

Figure 7.2: Execution times graph example

7.4.3 Probability density plot support details

The probability density plot creation implementation is in class ProbabilityDensity Graph-
Creator. It can be configured with maximum Y axis value to show (the default is 107?).

The plot creation uses The R Project for Statistical ComputingEI to obtain coordi-
nates for plotting probability density function for set of measured values as the Apache
Commons Math library does not have equivalent methods.

If the R Project executable is not available, than probability density estimation is com-
puted using algorithm desribed in http://people.sc.fsu.edu/~hnguyen/Presentation/
hoa Auburn_modified 0327.pdf. This algorithm is implemented in the class cz.cuni.mff-
.spl.evaluator.graphs.ProbabilityDensityGraphCreator.LambdaVoronoi. This is
just a fall-back implementation in case that R is not available and its results are just to
sketch a preview on probability density function.

ility density pari: (sigma clipped F 3,0 * sigma)

|
Figure 7.3: Probability density comparison graph example

"The R Project web page http://www.r-project.org/

35

http://people.sc.fsu.edu/~hnguyen/Presentation/hoa_Auburn_modified_0327.pdf
http://people.sc.fsu.edu/~hnguyen/Presentation/hoa_Auburn_modified_0327.pdf
http://www.r-project.org/

7.4.4 The R Project invocation

The R Project invocation is implemented in class cz.cuni.mff.spl.evaluator.r.RProject-
Caller.

Instance of this class needs two parameters in constructor - path to Rscript executable (de-
fault is Rscript in constant R_ RUNTIME__DEFAULT) and file representing directory
where temporary files will be created.

Each call to the method getDensitySeries requires parameters for double array of data to
compute series for and name for the series. The return value is an instance of X'YSeries from
the package org.jfree.data.xy which is used in the graph creation. The Rscript executable
is used to get values for XY Series:

1. Files for R script, X axis values and Y axis values are created in temporary folder
used by the RProjectCaller instance (spl-rscript-<#>.r, spl-rscript-z-<#>.txt, spl-
rscript-y-<#>.trt, where <#> is number of Rscript execution this JVM instance).

2. R script is prepared and written to prepared file (spl-rscript-<#>.r). It has the
following content:

SPL Evaluator generated temporary file

density.adjust <- 1

data <- as.double(c(

1, 2, 3, ..., N # measured values to compute probability series for
))

dst <- density(data, adjust=density.adjust)

write(dst$x, file="full path to spl-rscript-x-<#>.txt")
write(dst$y, file="full path to spl-rscript-y-<#>.txt")

3. The Rscript executable command is executed with full path to the created R script
file as parameter and XY Series is constructed after it terminates from X axis and Y
axis files and is returned.

36

8. Using SPL as a library

This chapter describes how to use the Framework as a library in other application to invoke,
observe and control the execution process of the Framework.

There is special class cz.cuni.mff.spl.InvokedExecution which encapsulates the Frame-
work execution.

Create new instance and call method run (usually in a separate thread) to run the execution
process.

If you need to cancel the running execution, than call method cancelExecution.

8.1 InvokedExecution class

The run method starts the execution with the provided arguments as its parameters. Note
that there can be only one running execution inside one JVM instance started through class
InvokedExecution. The execution processing is synchronized on the class type and if you
run more instances concurrently, than one will process the whole execution and the others
will wait in a queue for the first one to finish.

The main reason to serialize the execution processing is to prevent mixing of the log mes-
sages.

There are two ways to run more than one execution concurrently.
The first one is to run them in separate JVM instances.

The second one is to load the Framework library with separate class loaders inside one JVM.
This way of the concurrent execution is not recommended as you might run to problems with
the permanent generation memory (PermGenError) in the running JVM. All classes are
loaded multiple times and the JVM does not perform garbage collection on loaded classes
by default.

The full signature of the run method:

String cz.cuni.mff.spl.InvokedExecution.run(
boolean abortOnThreadInterrupt,
File xml,

File wd,
File ini,
String machine,
InteractiveInterface interactive,
Appendable outputTarget,
int logDetaillevel,
boolean acceptExceptions
) throws SplRunError

37

Description of InvokedExecution.run method arguments

boolean abortOnThreadInterrupt
This flag indicates if the execution should abort, when the running thread is inter-
rupted.

java.io.File xml
File with the SPL project configuration details.

java.io.File wd
File instance pointing to the working directory which should be used for the execution.

java.io.File ini
INI file with additional configuration details. Can be null.

java.lang.String machine
The identification of machine, where to process the measurements.

cz.cuni.mff.spl.utils.interactive.Interactivelnterface interactive
Instance of the interactive interface used when remote machine or repository requires
further authentication details, or null when interactivity is not allowed (any access to
the remote system which requires further authentication will then result in a failure).
How to get one instance is described further in this section.

java.lang.Appendable outputTarget
This arguments allows calling application to receive log output from the running exe-
cution through the provided Appendable instance. This argument can be null when
no log output passing is requested by the caller. For more details see the notes further
in this section.

int logDetailLevel

This argument specifies which log messages should be passed to the Appendable
instance provided in argument outputTarget. The value is ordinal number for desired
item in the enumeration cz.cuni.mff.spl.utils.logging.SplDynamicTarget Logger-
Factory. LEVELS. The main reason why the argument is not null is that it is easier
to call the method over reflection (for example from the Hudson plug-in which does
not have SPL library on the class path). For more details see the notes further in this
section.

boolean acceptExceptions
This flag indicates whether to include exception stack traces to the log messages passed
to the Appendable instance provided in argument outputTarget.

Interactivelnterface interface argument notes

The Framework provides two basic implementations of the cz.cuni.mff.spl.utils.interacti-
ve.Interactivelnterface. The first one uses console input and output and is implemented in
class cz.cuni.mff.spl.utils.interactive.InteractiveConsole. The second one implements
simple graphical user interface using Swingﬁl and is located in class cz.cuni.mff.spl.utils.in-
teractive.InteractiveSwingGui. Just create a new instance of those classes with default
constructor.

1Swing usage tutorial http://docs.oracle.com/javase/tutorial/uiswing/

38

http://docs.oracle.com/javase/tutorial/uiswing/

Appendable interface argument notes

The java.lang.Appendable interface is used because of the following reasons:

o It is part of standard Java library, so users of the Framework can easily implement
specific instances without any dependency on the Framework (for example when it is
being used through class loader as in SPL Tools Hudson Plug-in).

o This interface is for example implemented by java.lang.StringBuilder, java.lang-
.StringBuffer, java.lang.CharBuffer or java.io.PrintStream.

o We need just one method witch will accept an instance of java.lang.String with
created log message text.

Valid user implementation of Appendable needs to implement only method Appendable
append(java.lang.CharSequence csq) as only this method is used for passing log mes-
sages and it is guaranteed that the whole message is passed in one call.

Log detail level notes

Following table describes possible values for the logDetailLevel argument of the run
method.

| # [LEVELS item | Behaviour

<0 |- Pass no messages
0 FATAL Pass only fatal error messages.
1 ERROR Pass all error and more severe messages (above in the table).
2 WARN Pass all warning and more severe messages (above in the table).
3 INFO Pass all informational and more severe messages (above in the table).
4 DEBUG Pass all debug and more severe messages (above in the table).
>=5 | TRACE Pass all messages.

8.2 InvokedExecutionConfiguration class

This class provides implementation for cancelling the started invoked execution. It behaves
as a singleton and has only static methods. Its method checkIfExecutionAborted is called
during the Framework execution to check if the execution was aborted and if so, then the
unchecked exception SplRunlInterrupted (defined as static inner class) is thrown.

You you should not need to manipulate with this class when you are using the Framework
as a library.

39

9. Eclipse Plug-in

This chapter describes SPL Tools Eclipse Plug-in. We will refer to it just as the Plug-in in
this chapter.

The Plug-in has three functional parts:
1. Part with the support for editing SPL annotations in Java source code.
2. Part with SPL execution support.

3. Part with support for viewing SPL execution and evaluation results.

9.1 Source code repository

The Plug-in source code GIT repository is located on the following URL:
http://sourceforge.net/p/spl-tools/eclipseplugin/
It can be cloned for example with one of the following GIT commands:

git clone git://git.code.sf.net/p/spl-tools/eclipseplugin spl-tools-eclipseplugin
git clone http://git.code.sf.net/p/spl-tools/eclipseplugin spl-tools-eclipseplugin

There are multiple branches in the repository. The production stable code is located in the
branch master and the other branches serve for testing and implementing new features.

9.1.1 Directory layout of the Eclipse project

(d) .git (GIT folder)

(d) icons (icons and images used in user interface)

(d) 1ib (folder for SPL library JAR files)

(d) META-INF (Eclipse plug-in project meta information folder)
(=) |- MANIFEST.MF (Eclipse plug-in manifest)

(d) src (Eclipse plug-in source code)

(d) src-xtext (source code for Xtext editors)

(@) |- src (Xtext editors source code with implementation)
(d) |- src-gen (generated Xtext editors source code files)

(=) .classpath (Project Java class path configuration file)

(-) .gitignore (GIT ignore file)

(=) .project (Eclipse file with project configuration)

(=) build.properties (build properties file)

(=) license.txt (Eclipse plug-in license file)

(=) readme.txt (Readme file with current development notes)

(=) plugin.xml (Eclipse plug-in descriptor XML file)

9.2 Requirements

Following Eclipse plug-ins are required for running the Plug-in.

40

http://sourceforge.net/p/spl-tools/eclipseplugin/

Xtext plug-in in version 2.3.0 or newer
The Xtext plug-in can be installed from Eclipse Marketplace or from its update site
with following URL:

http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/
or
http://download.itemis.com/updates/releases/

Xtext plug-in is necessary for both compilation and runtime of the Plug-in.

Eclipse Modelling Tools
This group of plug-ins is required for generating Xtext files and it should install au-
tomatically with Xtext. If you are using Eclipse Modeling Tools release than you
already have it.

Eclipse update site URLs:
o Eclipse Juno (4.2): http://download.eclipse.org/releases/juno/
o Eclipse Indigo (3.7): http://download.eclipse.org/releases/indigo/
See user documentation on further details on how to install an Eclipse plug-in.

The next dependencies which need to be satisfied are JAR files of the Framework which need
to be placed (copied) to the lib directory manually.

9.3 Compilation

The Plug-in project is meant to compile by the Eclipse IDE and no build script is used.

You need to perform following steps to prepare the Plug-in project for full compilation upon
its repository is cloned:

1. Run src/cz/cuni/mff/spl/eclipseplugin/xtext /GenerateSPL_ xtext.mwe2 as
MWE2 Workflow to generate Xtext related files which are not present in the public
repository.

Note: If you do not see the MWEZ2 Workflow in the Eclipse context menu Run As,
than you are missing some of the Plug-in requirements listed in the previous section.

The common issues with the MWE2 Workflow execution are discussed further it
this section.

2. Copy the Framework distribution JAR files to the lib directory of the Plug-in project.
3. Refresh the Eclipse project.

4. Rebuild the Eclipse project. Applies only when automatic rebuild in Eclipse is not
enabled.

9.3.1 MWE2 Workflow related issues

Running the MWE2 Workflow to generate Xtext required source code files is very sensitive
on the folder naming. Following issues were observed during the development. Each issue
has a brief solution description.

41

http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/
http://download.itemis.com/updates/releases/
http://download.eclipse.org/releases/juno/
http://download.eclipse.org/releases/indigo/

Couldn’t find module cz.cuni.mff.spl.eclipseplugin.xtext.GenerateSPL__ xtext
Make sure that value of variable projectName in the file src/cz/cuni/mff/spl/ec-
lipseplugin/xtext/GenerateSPL__xtext.mwe2 matches name of the Plug-in pro-
ject folder (otherwise some files may be generated to bad directory) and that folders
src-xtext /src and src-xtext/src-gen already exist in the project. The folder name
is case sensitive. Default value:
var projectName = "eclipseplugin"

java.io.IOException: The path ’/eclipseplugin/.../*.java’ is unmapped
Make sure that node name in the file .project matches the name of your project
folder, otherwise URI mapping in the MWE2 does not work properly.

Default name of the Plug-in project folder is eclipseplugin (case sensitive even on
Windows machines due to URI mapping).

MWE2 Workflow execution complains about class path issues
Add the src folder to the MWE2 Workflow run configuration manually.

9.4 Package structure overview

This section describes package structure of the Plug-in project. All classes are placed in
the package cz.cuni.mff.spl.eclipseplugin or its sub-packages. The following package
description list uses EP as a short-cut for cz.cuni.mff.spl.eclipseplugin.

Folder src

EP Root package with the main Plug-in classes

EP.ast
AST manipulation classes

EP.dialogs
SWT dialog implementations.

EP.guiparts
GUI componets implementations.

EP.guiparts.annotationsoverview
GUI components for annotation in source code presentation.

EP.guiparts.binding
SWT binding related classes.

EP.guiparts.binding.converters
Converters for the SWT bindings.

EP.guiparts.binding.validators
Validators for the SWT bindings.

EP.guiparts.editors
GUI editation componets implementations.

EP.guiparts.editors.annotation
GUI components for annotation editors.

42

EP.guiparts.editors.configuration
GUI components for configuration editor.

EP.guiparts.execution
GUI compontens for the Framework execution.

EP.guiparts.model
Proxy classes for SWT binding to the Framework classes.

EP.guiparts.results
GUI components for the evalution result presentation.

EP.guiparts.shared
Basic shared GUI components implementation.

EP.preferences
The Plug-in preferences pages for configuration.

EP.tools
Various tools used across the Plug-in.

EP.tools.code
Tools related to the source code manipulation.

EP.tools.execution
Tools related to the Framework execution.

EP.tools.listeners
Eclipse IDE context listeners.

EP.tools.parser
Tools encapsulating the SPL parser usage.

EP.views
The Eclipse vies implementation.

EP.views.configuration
SPL project and INI configuration editors.

EP.views.execution
The Framework execution view.

EP.views.overview
The SPL annotations overview in the source code.

EP.views.results
The SPL evalution results presentation view.

EP.wizards
The new file wizards.

EP.xtext
The Xtext grammar declaration files.

org.eclipse.wb.swt
The resource managers used in the Plug-in.

43

Folder src-xtext/src

EP.xtext
The generated Xtext grammar modules.

EP.xtext.formatting
The Xtext formatters.

EP.xtext.ui
The Xtext Ul editors implementation.

EP.xtext.ui.contentassist
The Xtext content assist implementation.

EP.xtext.ui.highlighting
The Xtext highlighting implementation.

EP.xtext.ui.labeling
The Xtext labeling providers.

EP.xtext.validation
The Xtext input validation implementation.

Folder src-xtext/src-gen

This folder contains files generated by the Xtext which should not be edited by hand. They
are generated after each grammar change and all manual changes would be lost.

9.5 Binding to the Eclipse IDE

The SPL Annotation Overview needs to listen to the event when the active editor in its
perspective is changed. It adds the instance of class cz.cuni.mff.spl.eclipseplugin.tools-
Jisteners.PagePartChangedListener to the instance of org.eclipse.ui.IWorkbench-
Page where it is located.

The second binding created dynamically managed by the SPL Annotation Overview is us-
age of the cz.cuni.mff.spl.eclipseplugin.tools.listeners.DocumentChangedListener.
This document change listener is assigned to the active Eclipse editor and removed when
the editor stops being active editor or when it is closed. This listener informs the annotation
overview that the document was changed and the annotation list should be refreshed.

9.6 Source code manipulation

This section describes how the Plug-in accesses and manipulates the source code files, how
it obtains the list of annotations and how it updates them.

44

9.6.1 Parsing annotations from the source code

Methods described in this section are used for obtaining the list of annotations in the active
Eclipse editor. Those methods are is used in the SPL Annotation Overview.

The implementation is located in the package cz.cuni.mff.spl.eclipseplugin.ast.

The implementation is based on the Java Abstract Syntax Tree which is represented by
the class org.eclipse.jdt.core.dom.CompilationUnit. This class represents Java syntax
tree and is used by the Eclipse Java editor to represent the syntactical tree for every com-
pilation unit. The compilation unit is abstraction for both the source code file and the class
file.

The class ASTHelper is used to obtain the CompilationUnit instance of the currently
selected editor. It tries to get the shared instance of the CompilationUnit class which is used
by the Eclipse IDE. This shared instance may not be present when the Eclipse active editor
is not the Java editor or when the request is made before it is created on the background.
If the shared instance is not present, than the ASTHelper requests one to be created on
demand.

After acquiring the CompilationUnit instance, than it is passed to the SPLAnnotation-
Finder class instance which uses AST visitors to inspect the Java syntax tree. The visitors
find all SPL annotations in the syntax tree and create instances of AnnotationDeclaration
class for them.

The AnnotationDeclaration class instance represents one SPL annotation and contains
annotation field declarations (one for each of generators, methods and formula field) which
are instances of the class AnnotationFieldDeclaration.

The AnnotationFieldDeclaration class instance contains list of instances of the class
StringDeclaration. Note that the annotation field can be in code represented in one of
the following ways:

e generators = "generator alias declaration as one string";
e generators = "generator alias declaration " + "as multi-part string";
e generators = { "multiple " + "generator", "alias declarations"}

The StringDeclaration class instance represents one string declaration in the annota-
tion field (see the string examples above) which contains as many instances of the class
StringDeclarationPart as there are concatenated strings.

The StringDeclarationPart class instance contains the original string literal from the
source code and its position.

9.6.2 Writing modifications to the source code

Modifications are written to the source code using two different concepts. The first one uses
Abstract Syntax Tree (AST) mentioned in the previous section. The second one just replaces
the annotation with the newly created content.

The modification of the AST is used for adding one generator/method alias declaration or
formula declaration. It is implemented in the class cz.cuni.mff.spl.eclipseplugin.tools-
.code.JavaCodeManipulator.

45

The annotation replacement is used when user edits annotation with annotation editor. The
implementation is in the class cz.cuni.mff.spl.eclipseplugin.tools.code.SPLAnnota-
tionReplacer. The implementation finds the original annotation in the AST and replaces
its location with the new content which is generated to the StringBuilder. Each declaration
string is split to parts to allow smart adding new lines to the generated output and not to
overflow reasonable text width.

9.7 Project configuration

This section contains information about persistent configuration which is stored in the Eclipse
project which is annotated.

The Eclipse project which uses SPL has to have assigned one spl-config.xml file. This file is
used for validating SPL annotations in the source code files inside the project.

The project XML configuration file is set by using the Configure project of the active
Java source code editor button in the SPL Annotations Overview. The configuration
file selection dialog with the project tree is shown. If the XML configuration file was set
before, than it is selected. The configuration editor is opened on the selected file after the
OK button is pressed.

The path to the selected XML configuration file is saved into the project settings. This
setting is located in the following file under the key ProjectSplConfig:

.settings/cz.cuni.mff.spl.eclipseplugin.SPLToolsEclipsePluginConfiguration.prefs

When no XML configuration file is set for the project, than the Plug-in tries to load the
configuration from the default file spl-config.xml in the project root. If this file does not
exist, than the Plug-in tries to create it (this may fail when the project file system location
is not writeable).

9.8 Basic GUI composition concepts

The graphical user interface (GUI) is created using the Standard Widget Toolkit (SWT).

The basic concept used in the Plug-in implementation is its composition of reusable compo-
nents.

We distinguish the following types of the GUI components:

views
The views have no input file and they either reflect some information in the active
editor, show another information to the user, or allow user to do some operations from
within Eclipse.

The SPL Annotations Overview is the example of the view reflecting information
in the active editor.

The SPL Execution View and SPL Results Overview provide additional SPL
support for the user inside the Eclipse IDE.

The views are located in the package cz.cuni.mff.spl.eclipseplugin.views where
each view has its sub-package.

46

editors
The editors allow to edit files with the improved experience than the text-only editor
can offer.

The Plug-in provides two such editors. The first one allows editing the XML configura-
tion file (cz.cuni.mff.spl.eclipseplugin.views.configuration.SplConfiguration-
Editor) and the second one INI configuration file (cz.cuni.mff.spl.eclipseplugin-
.views.configuration.IniConfigurationEditor).

dialogs
The dialogs are shown on top of the Eclipse IDE.

The dialog implementation classes are placed in the package cz.cuni.mff.spl.eclipse-
plugin.dialogs. There is implementation of the SPL annotation editor (SPLAnno-
tationEditorDialog), add method/generator alias (AddAliasDialog), add formula
dialog (AddFormulaDialog) and a few more.

All types of the GUI parts described above use the reusable specialized components for
the inner implementation to allow easier transformation of the one type to another with
minimized effort (for example transformation the INI configuration editor to the dialog).
Those reusable parts are located in the package cz.cuni.mff.spl.eclipseplugin.guiparts
and its sub-packages. Those sub-packages are named by the purpose of the components
inside. See the section [tPackage structure overviewl on page] for the details.

Those reusable components utilize both the inheritance hierarchy and the type parametriza-
tion. The basic example is the SPL generator alias editor with the following type
hierarchy (classes without package are from the package cz.cuni.mff.spl.eclipseplugin-
.guiparts.editors.annotation):

« org.eclipse.swt.widgets.Composite
« SPLAliasEditor<cz.cuni.mff.spl.annotation.Generator>
« SPLGeneratorAliasEditor

The type parametrization is mainly used to allow common implementation of the GUI com-
ponent for the generator and method aliases.

9.9 Xtext usage

The Plug-in has its own implementation of the SPL grammar defined in the Framework. This
parallel implementation was necessary for the highlighting and the content assist support for
the declaration editors.

The grammar implementation uses Xtextl and is located in the src folder in the package
cz.cuni.mff.spl.eclipseplugin.xtext and it is

The Xtext SPL grammar is split into following files:

SPL common.xtext
Contains SPL grammar rules for generator and method alias declarations. Does not
contain the Model rule.

IXtext web page http://www.eclipse.org/Xtext/

47

http://www.eclipse.org/Xtext/

SPL_formula.xtext
Contains SPL grammar part for formula declarations. Uses the SPL__common.xtext.
Defines Model rule which is entry point for the formula declaration editor (its content
assist, highlighting, etc.).

SPL_ generatorAlias.xtext
This grammar file just defines the Model rule for the generator declaration editor.
Uses rules in the SPL__common.xtext.

SPL methodAlias.xtext
This grammar file just defines the Model rule for the method declaration editor. Uses
rules in the SPL__common.xtext.

The Xtext Java source code files generation process is described in the section [

on page f1]. The generated files are placed to the following two folders:

src-xtext /src
Files generated to this folder are meant for the added implementation details.

src-xtext /src-gen
Files generated to this folder are not meant for any modifications

9.9.1 Xtext embedded editors

The Plug-in uses the Xtext embedded editors which were introduced in the Xtext version
2.2. The embedded editors can be placed inside another graphical user interface components
such as dialogues.

The creation of the Xtext embedded editors is implemented in the class cz.cuni.mff.spl-
.eclipseplugin.xtext.SPL__EmbeddedEditorFactory which contains three static meth-
ods for creating embedded editors. Those methods take two arguments — the first spec-
ifies the SWT Composite instance specifying the embedded editor parent component,
the second is instance of the class cz.cuni.mff.spl.eclipseplugin.xtext.ui.contentassist-
InteractionProvider. which .

The instance of the class InteractionProvider is provided to the embedded editor con-
tent assist and highlighting implementation through the static method getInteraction-
ProviderForEmbeddedEditor(). This way was chosen because this is the most straight-
forward way to allow content assist and highlighting implementations to interact with the
current SPL parser context and the declaration editor. The method getInteraction-
ProviderForEmbeddedEditor() can be called only when call to one of the create...
methods is in progress, otherwise an IllegalStateException is thrown. Synchronization on
the class is used to achieve this behaviour.

9.9.2 Content assist support
The content assist support allows user to easily refer to the defined SPL projects, generator
and method aliases and Java types inside the Xtext editors. The context assist implemen-

tation is located in the folder src-xtext/src inside the package cz.cuni.mff.spl.eclipse-
plugin.xtext.ui.contentassist.

48

The current parser context obtained from the instance of the InteractionProvider is used
to create proposals regarding project, revision, generator and method aliases.

The Java type proposals are created in the instance of the class ClassDeclarationHelper
using the Java model of the Eclipse workspace. The proposal creation can’t create proposals
for all Java types visible in the Eclipse workspace as it would take too much time and the
proposal would not be usable, so the proposals are created only for Java types which match
the already typed string. Proposals are created for all matching packages and all classes in
the defined packages (the already typed string and its prefix to the last dot).

9.9.3 Syntax coloring (highlighting) support

Syntax highlighting serves for better orientation when using Xtext editors for writing method
and generator aliases and formulas. Every part of the text can have its own color and
style which depends on the grammar element represented by the text. The highlighting
implementation is located in the folder src-xtext /src inside the package cz.cuni.mff.spl-
.eclipseplugin.xtext.ui.highlighting.

The current parser context obtained from the instance of the InteractionProvider is used
for searching for projects, revisions and aliases. It allows to distinguish between known
elements and elements that has not been declared so it can be marked by different color.

Class DefaultHighlightingConfiguration provides the set of highlighting styles and their
default values. Class HighlightingHelper uses the parse tree created by Xtext parser to
calculate proper highlighting.

9.10 SPL Annotations Overview

The SPL Annotations Overview shows details of the annotations in the active Eclipse
Java source code editor.

Binding to the active editor

This view uses binding to the Eclipse user interface part selection change events (which
is briefly described in the section [tBinding to the Eclipse IDEj on page @]) using class cz-
.cuni.mff.spl.eclipseplugin.tools.listeners.PagePart ChangedListener to listen to the
change of the active editor.

The currently active editor is stored in the instance of the class cz.cuni.mff.spl.eclipse-
plugin.tools.code.EditorPluginContext which is shared between the Eclipse page lis-
tener and the annotations overview.

The Eclipse page part is considered editor when its part ID is either org.eclipse.jdt.ui-
.CompilationUnitEditor or when it contains “editor” as a substring.

When the active editor is changed, than the document changed listeners registered in the
EditorPluginContext are moved from the previous active editor to the new one.

49

Refreshing the shown annotations

The annotations shown in the SPL Annotations Overview are refreshed automatically
when the active editor changes and when the document in the active editor changes. The
refresh operation on document change is not performed immediately but with a small de-
lay.

The delay for the refresh operation is used because the refresh operation uses the Abstract
Syntax Tree for the document and it takes some time to build it. The second reason is that
we wait for the user to stop making changes to the document before we perform the refresh
operation as flashing view might disturb the user in his work.

9.11 Assisted annotation editing

The SPL Annotation Editor allows user to make modifications to the SPL annotation in
the source code with the content assist, highlighting and validation support.

9.11.1 Annotation editor dialog

The editor is implemented as a dialog in the class cz.cuni.mff.spl.eclipseplugin.dialogs-
.SPLAnnotationEditorDialog. This class is used for showing the instance of the class
SPLAnnotationEditor from the package cz.cuni.mff.spl.eclipseplugin.guiparts.edi-
tors.annotation to the user.

The dialog has two buttons — Save and Cancel. The save button is enabled only when
the annotation editor part is walid (it is currently valid when no its inner declaration is

edited).

The dialog is created and show in the method showSplAnnotationEditor of the class
cz.cuni.mff.spl.eclipseplugin.tools.StandaloneOperations.

9.11.2 Annotation editor component

The class cz.cuni.mff.spl.eclipseplugin.guiparts.editors.annotation.SPL Annotation-
Editor provides the editing capabilities for the SPL annotation represented by the instance
of the class cz.cuni.mff.spl.eclipseplugin.ast. AnnotationDeclaration.

This component uses all other annotation editor components located in the package cz.cuni-
.mff.spl.eclipseplugin.guiparts.editors.annotation. either directly or indirectly.

The hierarchy of the composition is shown in the following list:
o« SPLAnnotationEditor
o SPLFormulasEditor
« SPLFormulaEditor
o SPLGeneratorAliasesEditor
 SPLGeneratorAliasEditor
« SPLMethodAliasesEditor

50

¢ SPLMethodAliasEditor

The second level editors allow to edit multiple declarations and those declarations are edited
in the third level editors.

The formula editor requires that the instance of the cz.cuni.mff.spl.formula.context-
.ParserContext is provided to the basic SPL parser with the declared aliases. The in-
formation about the annotation declarations are maintained in the instance of the class
cz.cuni.mff.spl.eclipseplugin.tools. AnnotationDeclarationEditContext.

The method and generator declarations editors are used to edit declarations obtained from
the AnnotationDeclarationEditContext. which then provides the ParserContext in-
stance to the formulas editor. There are few issues which need to be taken in account when
the user edits the annotation:

o The alias declaration have parser errors when parsed with the basic SPL parser. Such
declaration should be corrected by the user as it will not be used in any formula by
the Framework.

The solution for this issue is not to pass such declaration to the formula editor in the
ParserContext instance.

o The alias declaration name may be duplicate. There is no guarantee which one of the
duplicate aliases would be used by the Framework and it is considered as an integrity
error. This may happen when the project configuration already has an alias with
specified name.

The used solution for this issue is not to pass declarations with duplicate aliases to the
formula editor in the ParserContext instance. Note that when the global alias with
the duplicate name is defined, than it is passed to the ParserContext instance.

The multiple declaration editors (SPLFormulasEditor, SPLGeneratorAliasesEditor,
SPLMethodAliasesEditor) show the list of current declarations with the validity state
and problem message (if any) for each declaration. They allow to add new declaration and
edit or delete the selected one.

The single declaration editors (SPLFormulaEditor, SPLGeneratorAliasEditor, SPL-
MethodAliasEditor) serve only for the assisted editing and validation of the declaration.
They use the Xtext embedded editors which utilize the Xtext grammar for SPL (see the
section {7). The embedded editors use the Xtext grammar for the content assist and high-
lighting support, but the declaration editor uses the basic SPL parser for determining if the
declaration text is valid or not. This behaviour was chosen, because the Plug-in development
may respond to the potential changes made to the SPL grammar in the core project with a
delay.

9.12 Invoking execution

The Framework execution can be invoked directly from within the Plug-in using the SPL
Execution View. The invocation uses the invocation methods described in the chapter
[Using SPL as a library on page @]

51

9.12.1 SPL Execution View

The SPL Execution View (cz.cuni.mff.spl.eclipseplugin.views.execution.SPLExe-
cutionView) contains instance of the class cz.cuni.mff.spl.eclipseplugin.guiparts.exe-
cution.StartExecutionControl which allows user to set execution parameters, start the
execution, view its progress, cancel it and view results when execution finishes.

The view contains three tabs. The first one is for execution parameters and allows user
to save the configuration for further usage under specified name. The execution configu-
ration is saved using the class cz.cuni.mff.spl.eclipseplugin.SPLToolsEclipsePlugin-
Configuration. The run button starts the Framework execution which is described fur-
ther.

The second tab allows user to observe progress of the running execution. There are two
buttons — Cancel button to stop the running execution (available only while the execution is
running) and Show results button which loads the execution results to the results presenter
on the third tab.

The third tab contains the SPL results presenter. This presenter is the same component
which is used in the SPL Results Overview which is described in the next section [Viewin
on page 3.

9.12.2 Invocation implementation details

The Framework execution invocation implementation is located in the package cz.cuni-
.mff.spl.eclipseplugin.tools.execution. The class ExecutionStarter starts the execu-
tion for provided instance of the class ExecutionConfiguration with the configuration
details.

The Framework is loaded by its own instance of the URLClassLoader. This class loader
load all JAR files from the lib folder of the Plug-in. The class loader is used to obtain
the methods necessary for the invocation and its cancellation and to get the class instance
representing the class cz.cuni.mff.spl.utils.interactive.InteractiveSwingGui which is
used for user interaction with the Framework.

The execution process is encapsulated in the ExecutionStarter inner class RunFrame-
workEclipseJob. This class is an Eclipse job (org.eclipse.core.runtime.jobs.Job) which
is shown in the Eclipse Progress view and it can be even cancelled from there. This class
creates the thread for the execution, starts it and waits for it to finish. The newly created
execution thread is necessary for the cancel ability to work correctly. The execution thread
just invokes the execution with the parameters provided in the instance of the Execution-
Configuration class.

The execution progress is passed from the Framework to the Plug-in GUI through the Exe-
cutionStarter inner class FrameworkLogger Appender which implements the interface
java.lang.Appendable. This class buffers lines produced by the execution and allows the
RunFrameworkEclipseJob instance to apply them to the GUI. This two step update is
necessary to prevent the GUI from flashing when too many updates occur in a very short
time (the default update interval is 250 milliseconds).

92

9.13 Viewing results

The Plug-in contains SPL Results Overview which allows user to browse the SPL evalu-
ation results. The results can be located either on local file system, or accessed over HT'TP
protocol.

The SPL evaluation results can be also browsed in the third tab of the SPL Execution
View.

9.13.1 SPL Results Overview

The implementation of the SPL Results Overview is the class cz.cuni.mff.spl.eclipse-
plugin.views.results.SPLResultsOverview. The main visual component is in the class
cz.cuni.mff.spl.eclipseplugin.guiparts.results.ResultsComposition.

The main package for the results visual components is cz.cuni.mff.spl.eclipseplugin-
.guiparts.results.

The results are loaded from the XML result description file generated by the XML output
of the evaluation (see [on page @] for more details). The path to the file can
be either local or

The ResultsComposition component contains the area for specification of the XML re-
sult description file and a org.eclipse.swt.widgets.TabFolder instance for showing the
results.

When the user fills the path to the results and presses the Refresh button or Enter key,
than attempt to load the XML description file is made. The data load is implemented using
Eclipse Job functionality to allow easy way to cancel the operation.

The first thing which is done is to acquire the read only abstraction of the file access imple-
mented in the interface cz.cuni.mff.spl.deploy.store.IStoreReadonly. Following items
are needed for access to information about presented results:

XML results description file (IStoreReadonlyFile)
The file with the XML description of the results. Access to this file has to be available
in order to show the results. The file contains XML representation of the class cz-
.cuni.mff.spl.evaluator.output.results.ResultData.

Evaluation directory (IStoreReadonlyDirectory)
The abstraction of the folder with the evaluation results. This is used to access the
graph images generated during the evaluation. Optional.

The IStoreReadonly instance for the results location
The abstraction of the whole store for accessing measured data for dynamic graph
creation. Optional.

All those items are acquired by calling the static method tryToFindStoreForPath on
the class cz.cuni.mff.spl.eclipseplugin.tools.execution.StoreProvider. This method
checks if the location starts with “http://” or “hitps://” string and if so, than it uses the
cz.cuni.mff.spl.deploy.store.HttpStore to access remote files, otherwise the cz.cuni-
.mff.spl.deploy.store.LocalStore is used.

53

The entire results processing from this point works only on top of the IStoreReadonly,
IStoreReadonlyDirectory and IStoreReadonlyFile interfaces.

When the XML results description file is not available, than error message is shown. It is
loaded otherwise and preprocessed — each instance of the class cz.cuni.mff.spl.evaluator-
.statistics.MeasurementSample in it is assigned the store data provider for accessing the
measurement sample data. The IStoreReadonly instance acquired for the results location
path is used when available, otherwise a dummy nothing-providing implementation is created
(it just throws exception that no data are available).

9.13.2 Navigation in the results

The navigation in the results shown in the TabFolder is processed over the interface IRe-
sultsNavigator and its implementation ResultsNavigator which is inner class of the
ResultsComposition. This interface provides access to the currently shown results data,
evaluation configuration, evaluation directory and methods to show specific levels of detail
of the results.

Each call to one of the show.. methods manipulates the TabFolder instance. All tabs from
the position for the new tab to the right are removed and new tab for the specified level of
detail is created. The tab creation includes creation of the scrolling composite to provided
better user experience and better resizing support.

9.13.3 The result details visual components

The result details GUI components are all located in the package cz.cuni.mff.spl.eclipse-
plugin.guiparts.results

Following list provides description of the result presentation visual components

ResultsComposition
This is the main component which manages shown results.

EvaluationResultsOverview
Shows the evaluation results overview summary. Uses the AnnotationOverview-
PresenterTreeView component.

AnnotationDetail
Shows details about one annotation location. Uses the FormulasInAnnotation-
PresenterTreeView component.

FormulaDetail
Shows details about one SPL formula inside the SPL annotation. Uses the Formula-
DetailEvaluationPresenterTreeView component.

ComparisonDetail
Shows details about one comparison in the SPL formula with its graphs.

MeasurementDetail
Shows details about one SPL, measurement with its graphs.

ParsedDeclarationsPresenterTreeView
This generic component is used for presenting SPL aliases and formulas in the .

o4

SimplelniPresenter
This component is used to present the configuration values which were used for the
evaluation and configured through the INT file.

9.13.4 Graph presentation

The graph presentation is done by the GraphPresenter component. This component tries
to obtain the graph for the specified graph definition.

The graph presenter tries to create dynamic graph first using the measured values and pro-
vided definition using the class cz.cuni.mff.spl.evaluator.graphs.GraphProvider which
uses the JFreeChart library. This fails when the measurement sample data are not avail-
able. When the data are available, than the org.jfree.chart.JFreeChart instance is ob-
tained and enclosed into the instance of the class org.jfree.chart.ChartPanel. Chart-
Panel is a Swing® component and it is integrated to the Eclipse SWT user interface through
the method new_ Frame of the class org.eclipse.swt.awt.SWT__AWT. Graph created
through this method is dynamic and acts as an active component allowing user for example
to zoom in and out.

When the graph generation fails, than the graph presenter tries to load the graph image file
for the specified graph definition which was created during the evaluation. When this file is
found, than the image is loaded and presented as a static graph which has no more abilities
compared to the graphs generated by previously described way.

When the graph generation failed and no graph image was generated during evaluation, than
the message saying that there is no graph data is show.

The graph presentation uses the following components:

GraphPresenter
This component serves for the presentation of one graph and is used in the Compa-
risonDetail and MeasurementDetail components.

GraphConfigurationProvider
This component is placed before GraphPresenter instances in the Comparison-
Detail and MeasurementDetail components. It contains button for showing the
graph configuration dialog and is also used to update any existing instance of the
GraphPresenter component when the height or width in the configuration is changed.

GraphConfigurationEditor
This component is used to configure graph presentation options. It allows to set
minimum width and height for the generated graphs, path to the R project executable
(which is used for the probability density estimation calculation, see the section [Grap
eneration supportl on page BZ| and types of graphs that will be shown in the compar-
ison result detail and measurement detail.

The set of graph types that are shown in the comparison result detail and measurement
detail is determined by the union of graphs configured for showing in the results and graphs
configured for generation during the evaluation.

2Swing is an alternative to SWT for creating graphical user interface

95

9.14 SPL configuration editing

The SPL configuration editor allows user to make modifications in the XML configuration
file with validation support.

The editor is implemented by class cz.cuni.mff.spl.eclipseplugin.views.configuration-
.SplConfigurationEditor. It provides operations specific for editors and shows cz.cuni-
.mff.spl.eclipseplugin.guiparts.editors.configuration.ConfigurationEditor as its con-
tent which is composed of other sub editors.

There are two kinds of sub editors. First kind contains SPLMethodAliasesEditor and
SPLGeneratorAliasesEditor from package cz.cuni.mff.spl.eclipseplugin.guiparts.edi-
tors.annotation for editing global aliases. They are described in section [Assisted anno-l
Eation editiné on page p(J]. The second kind contains editors ProjectsEditor (for projects
configuration) and StringPairTableEditor (for parameters configuration) from package
cz.cuni.mff.spl.eclipseplugin.guiparts.editors.configuration.

9.14.1 Table editors

The StringPairTableEditor is one of universal table editors specified for editing pairs of
string values. It extends abstract TableEditor<T > which is the base for all table editors
used in the Plug-in parametrized by the object where value of single item is stored. Every
table editor use own table item dialog for editing single table item.

The type hierarchy of the table editors with its dialogs and edited items is shown in the
following list:

« TableEditor<T> use TableItemDialog<T> (abstract ancestor)
« StringPairTableEditor use StringPairDialog (edit pairs of strings)
o IniSectionEditor use IniEntryDialog (edit INI entries)
» StringTableEditor use SingleStringDialog (edit single strings)

Where TableItemDialog<T> is immediate abstract ancestor of every concrete table item
dialog in the list. The concrete table editors and dialogs are designed to be extended further
for specific purposes.

9.14.2 Projects configuration editors

The ProjectsEditor uses other configuration editor components located in the package
cz.cuni.mff.spl.eclipseplugin.guiparts.editors.configuration.

The hierarchy of the composition is shown in the following list:
ProjectsEditor
o ProjectEditor
o StringTableEditor
o BuildEditor
e RepositoryEditor

56

+« RevisionsEditor
« RevisionEditor

In the ProjectEditor is used extended StringTableEditor two times. First is configured
for editing class paths and second for editing scan patterns.

These editors use classes from package cz.cuni.mff.spl.eclipseplugin.guiparts.binding-
.validators for validating input values. The validity is reported via classes in cz.cuni-
.mff.spl.eclipseplugin.guiparts.binding package. Editors values are stored in model ob-
jects with property change support from package cz.cuni.mff.spl.eclipseplugin.guiparts-
.model.

9.15 INI configuration editing

The INI configuration editor allows user to make modifications in the INI configuration
file with validation and entry description support.

The editor is implemented by class cz.cuni.mff.spl.eclipseplugin.views.configuration-
JIniConfigurationEditor. It provides operations specific for editors and shows cz.cuni-
.mff.spl.eclipseplugin.guiparts.editors.configuration.IniEditor as its content which is
composed of cz.cuni.mff.spl.eclipseplugin.guiparts.editors.configuration.IniSection-
Editor sub editors. The IniSectionEditor is concrete table editor as is described in previ-
ous section. It is extended StringPairTableEditor configured for editing INI entries.

57

10. Hudson Plug-in

SPL Tools Hudson Plug-in is integration of the SPL Tools Framework for Hudson
Extensible continuous integration server®. We will refer to SPL Tools Hudson
Plug-in just as Plug-in in this chapter.

At the time of the Plug-in development, Hudson latest production version was 2.2.1 and
Hudson 3.0.0 was just in Release Candidate phase of life cycle. So plug-in is intended for
Hudson version 2.2.1 and tested with most recent 3.x version of Hudson at the time.

The Plug-in allows to run SPL Tools Framework evaluation on regular basis for any Hudson
job. Frequency of its execution is defined by the Hudson job configuration (for example on
every commit or once a day).

10.1 Compilation from source

This section describes steps to compile the plug-in package for Hudson from the source code.
The compiled Plug-in package can be downloaded from the SPL Tools web page:

http://sourceforge.net/projects/spl-tools/files/HudsonPlugin/

10.1.1 Source code repository

The Plug-in source code is provided in the form of Git repository on one of the following

URLs:

git://git.code.sf.net/p/spl-tools/hudson
http://git.code.sf.net/p/spl-tools/hudson

Example git command to clone repository:

git clone git://git.code.sf.net/p/spl-tools/hudson spl-tools-hudson

10.1.2 Directory layout of the project

The following directory and file tree describes the project directory layout.

(d) .git (GIT folder)

(d) 1ib (folder for SPL library JAR files)

(d) src (folder for the Hudson plug-in source code files)
(d) |- main (production source code files)

(d) |- java (Java source code files)

(d) |- resources (HTML and Jelly files for the Hudson user interface)
(d) | - webapp (icons for the Hudson user interface)

(d) target (folder for compiled binaries, created dynamically)
(=) .gitignore (GIT ignore file)

(=) license.txt (Hudson plug-in license file)

'Hudson web page http://hudson-ci.org/

58

http://sourceforge.net/projects/spl-tools/files/HudsonPlugin/
http://hudson-ci.org/

(=) README.txt (Readme file with current development notes)
(=) pom.xml (Apache Maven Project Object Model file)

More files and directories may be created during the compilation with Apache Maven.

10.1.3 Dependencies

Plug-in uses Apache Maven 38 for external dependency management, compilation, building
and packaging, so you will need to have this tool.

You need to copy SPL Tools Framework distribution JAR files to folder lib which is placed
in the plug-in project root directorya. This step is necessary as Maven does not resolve SPL
dependency. The SPL binary package can be downloaded from the following URL:

http://sourceforge.net/projects/spl-tools/files/release/

10.1.4 Compilation

Compilation is done by running command mvn in repository clone root directory.

Apache Maven downloads all required libraries and dependencies to compile (except Frame-
work JAR files mentioned above), runs compilation and produces Hudson Plug-in package
in folder target with name spl-tools-hudson-plugin.hpi.

Note that running the compilation for the first time can take a long time as Apache Maven
downloads many dependencies for the Hudson runtime.

10.1.5 Importing Plug-in to the Eclipse IDE

The Plug-in can be imported to the Eclipse IDE as an Eclipse project. The Eclipse project
needs few configuration files, the most important ones are .project and .classpath. Those
files are not placed in the source code repository as .classpath requires references to various
JAR files which are obtained using the Apache Maven and are then computer specific.

You can generate the necessary files with the following commands procedure:
1. Compile the Plug-in according to the previous sections
(a) Place Framework JAR files to the lib directory.
(b) Run mvn command in the Plug-in project root.
2. Run command mvn eclipse:eclipse to generate files for the Eclipse IDE.

Now the Plug-in project can be imported to the Eclipse 1910

2Apache Maven web page http://maven.apache.org/

3All JAR files in build/dist/ in compiled SPL Tools Framework

“TImporting project to Eclipse tutorial http://help.eclipse.org/helios/index. jsp?topic=Y%2Forg.
eclipse.platform.doc.user’,2Ftasksy2Ftasks-importproject.htm

59

http://sourceforge.net/projects/spl-tools/files/release/
http://maven.apache.org/
http://help.eclipse.org/helios/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Ftasks%2Ftasks-importproject.htm
http://help.eclipse.org/helios/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Ftasks%2Ftasks-importproject.htm

10.2 Implementation details

This section contains the implementation details for the Plug-in. It contains brief overview
about Hudson plug-in development and terminology, brief description of all classes, details
about running SPL execution and providing access to the SPL evaluation results over HTTP
protocol from within Hudson instance.

10.2.1 Basic information on Hudson plug-in development

Hudson uses its own JAR-like format for the plug-in distribution. The plug-in files have
the extension hpi and are similar to the JAR files. The following sections contain basic
information necessary to understand how Hudson uses its plug-ins.

Hudson extension point usage

When the plug-in is installed into Hudson, than it is extracted from the HPI file into its own
folder and loaded into the Hudson instance with a separate class loader. Hudson instance
loads the plug-in classes and finds all classes with the extension implementation.

A class is recognized by Hudson as its extension implementation when it contains an inner
class marked with the Java annotation hudson.Extension which extends Hudson plug-in
extension descriptor (for example hudson.tasks.BuildStepDescriptor). This inner class
is called as the plug-in descriptor.

Hudson examines the plug-in descriptor inheritance hierarchy and assigns it to the proper
extension group (such as build step or presenter extension). The plug-in descriptor instance
is used for its configuration in the user interface.

The extension implementation class (which contains the plug-in descriptor class as its inner
class) is instantiated only when the extension is used (for example, build step extension is
instantiated only when a build is in progress).

Contributing to the user interface

Hudson uses the JellyB language to create the user interface components. The Jelly allows
to combine HTML fragments with its own constructs and Java code invocation.

The Hudson plug-ins can create instances of hudson.model.Action interface implementa-
tion which are used to create and process actions in the Hudson web user interface. Those
actions are represented with links in the user interface and they process requests made to
their URL.

Each hudson.model. Action instance should have its Jelly description file or files. Further
description of the Jelly syntax and usage in Hudson is out side of the scope of this docu-
mentation and you should refer to the official Hudson documentation which is available on
the following URL:

http://wiki.eclipse.org/Hudson-ci

®Basic guide to Jelly http://wiki.hudson-ci.org/display/HUDSON/Basic+guide+to+Jelly+usage+
in+Hudson

60

http://wiki.eclipse.org/Hudson-ci
http://wiki.hudson-ci.org/display/HUDSON/Basic+guide+to+Jelly+usage+in+Hudson
http://wiki.hudson-ci.org/display/HUDSON/Basic+guide+to+Jelly+usage+in+Hudson

10.2.2 Description of classes

This section contains description of all classes used in the Plug-in, because there are very
few classes for its implementation compared to the SPL Tools Eclipse Plug-in. The
classes are described in the order of their usage during the Plug-in runtime inside a Hudson
instance. All classes with the Plug-in implementation are placed to the package cz.cuni-
.mff.spl.eclipseplugin.

SPLToolsDescriptor
This class contains basic implementation for the Plug-in descriptor.

Note that as this class implementation is standalone it does not act as a Hudson
plug-in descriptor itself — this implementation can be used with multiple Hudson plug-
in extension points. This design decision allows easier extension of the Plug-in with
reusing existing implementation for more Hudson extension points.

SPLToolsHudsonPlugin
This is the main class of the Plug-in implementation. It processes build requests.

Note that as the SPLToolsDescriptor this class is not Hudson extension itself and
it also contains only the execution implementation.

SPLBuilder
This class is the implementation of the Plug-in extension for Hudson. It extends the
hudson.tasks.Builder class to create a Hudson builder extension.

This class uses an instance of the class SPLToolsHudsonPlugin for processing the
build requests. It contains the public static inner class SPLDescriptorImpl which
extends the SPLToolsDescriptor and which is annotated with the Java annotation
hudson.Extension to act as Hudson plug-in descriptor.

ExecutionConfiguration
This class represents execution configuration details. It is serializable and it is used to
store the values configured in the Hudson user interface and to provide them to the
SPL execution processing.

ExecutionStarter
This class contains the Framework execution invocation implementation.

The Framework invocation relies on fact, that the Plug-in plug-in classes are loaded
by their own separate class loader of the type java.net.URLClassLoader.

This class loader is used to locate the plug-in directory where are the Framework JAR
files located. New URLClassLoader is created for loading the JAR files and it is
then used for the Framework invocation.,

SPLBuildPublisher
This class is responsible for publishing of the SPL evaluation results after successful
Framework execution. It is used by the SPLBuilder.

It copies the evaluation results file into directory for the executed Hudson build. It
creates the directory spl-tools-reports in it. This directory is used for all Plug-in
instances which are performed during the Hudson build.

6See ”Using SPL as a libraryl on page @] for further details on the Framework invocation.

61

Then it creates a subdirectory with name SPL__<identification> which is specific
to the SPLBuilder instance. The identification in the directory name is just call to
System.nanoTime() encoded to the hexadecimal string.

Then a directory evaluation is created under SPL__<identification> and the eval-
uation result files are copied there.

This procedure ensures that the SPL evaluation results is available as long as the build
results are maintained in the Hudson job.

SPLBuildAbstract Action
This abstract class contains basic shared implementation for the other hudson.model-
.Action implementation. It provides access to the Hudson instance URL and Plug-in
images and icons.

SPLBuildFailed Action
This action is used to present results of the Framework executions that were either
cancelled or that failed due to fatal error or exception. It contains a message with the
failure description.

SPLBuildReportAction
This action is used to present execution results summary for Framework executions
that finished correctly (not cancelled, no fatal errors). Its presentation shows links to
HTML report, XML result description file (and URL to it for usage in the SPL Tools
Eclipse Plug-in) and execution full log file. Note that only links to really created
files are shown.

The other purpose of this action is to serve content of the stored evaluation results
from the build folder over HTTP protocol. The details are described further in this
chapter.

SPLBuildReportPresent Action
This action is used to show the SPL Tools HTML Report link in the build menu.
It shows the HTML report inside the Hudson web user interface. The HTML report
is shown inside an <iframe> tag.

The Hudson web user interface Jelly files for the classes described above are located in the
following directories as the Hudson plug-in development suggests:

src/main/resources/cz/cuni/mff/spl/hudson/<class name>/

The class SPLBuilder has Jelly files for its configuration and help for configuration param-
eters.

The classes SPLBuildFailedAction and SPLBuildReportAction have only Jelly tem-
plate for the summary information which is shown on the build status page.

The class SPLBuildReportPresent Action has Jelly template for the whole Hudson web
interface page and it contains an <iframe> tag with link to the HTML report.

10.2.3 HTTP access to the evaluation results

The Plug-in provides access to the SPL evaluation results over HT'TP protocol from within
Hudson instance. The implementation is located inside the class SPLBuildReportAction.
This class contains all file paths necessary for accessing the SPL evaluation files stored inside

62

build results directory and the Framework working directory configured for the processed
build step.

The HTTP request processing is done in the method doDynamic which handles all requests
for the URL specified inside the instance SPLBuildReportAction.

This method checks if the request URL matches path to the evaluation results (i. e. if
it leads to the evaluation directory) and if so, than an instance of the class hudson-
.model.DirectoryBrowserSupport with root in the build result subdirectory specific to
the SPLBuildReportAction instance is used to handle the request.

Otherwise, the DirectoryBrowserSupport with the root in the Framework working direc-
tory is used to handle the request. This allows the Plug-in to serve the evaluation results from
the persistent location (build result folder) and measured data from the Framework working
directory configured in the build step configuration which may be deleted over time.

63

11. Development

This chapter briefly describes some improvements that came to our minds during work on
the project but could not be implemented due combination of lack of time and complexity.
Also libraries and tools used in the project are listed here together with work timeline and
progress.

11.1 What to improve

Add more version control systems

The Framework is prepared for adding support for more more version control systems such
as Bazaar® or Mercurial®.

The necessary implementation steps are described in the section [on page]

Add platform specific time measurement

The current implementation of the time measurement relies on usage of the method Sys-
tem.nanotime(). This implementation is portable between platforms and the resolution
of the nanotime method is believed sufficient in Java 7 implementation. However vari-
ous platforms offer optimized platform specific ways to measure time. Further development
should add support for platform specific time measurement to improve measurement results
on the various platforms. This extension has to include adding ability to select proper imple-
mentation for the machine where the measurement is to be performed as the measurement
sampling code has to reflect usage of the platform specific time measurement.

Logging

The current logging implementation does not support concurrent Framework execution, be-
cause the log outputs would get mixed together.

HTML report

The HTML report offers many ways for improvements. It may utilize JavaScript for enhanced
interactivity or it may use frames like the JUnit does.

Eclipse plug-in improvements

The Eclipse plug-in allows to make numerous improvements. Following list contains some of
them:

'Bazaar web page http://bazaar.canonical.com/
2Mercurial web page http://mercurial.selenic.com/

64

http://bazaar.canonical.com/
http://mercurial.selenic.com/

« Improve content assist support for Java types.

o Add support for viewing all SPL annotations in an Eclipse project. Annotation could
be obtained either by using the Abstract Syntax Tree for Java types, or using the SPL
scanner on build class files.

e Add support for formula evaluation on demand. The measurement data could be
acquired from the cache or measured on demand.

e Add support to run evaluation for specified formula only.

o Add support for assisted editing of SPL annotations inside Java editor. This feature
was discussed during the design phase of the project and we decided not to do it this
way, because it may become obsolete with the new Eclipse release as the Java editor
is marked as internal which means that it can change in any way without maintaining
backwards compatibility.

o Add support for mapping projects form SPL configuration to the Eclipse workspace
projects. This could be used in content assist for better Java type proposals when only
Java types visible from the specified project would be proposed.

Hudson plug-in improvements

The Hudson plug-in does not offer many opportunities for extension compared to the Eclipse
plug-in.

The main improvement would be to add ability to specify the INI configuration file content
in the build step configuration. This would allow user to just copy the INI values to the
configuration instead of uploading the INI configuration file to the machine running Hudson
instance.

Improve integration API

The current API for SPL invocation is created for purposes of the Eclipse and Hudson
plug-ins. Those plug-ins need to run the whole execution only. This public API has to be
extended to allow easier integration of the Framework library into third party applications
and in order to implement some of the new features for the Eclipse plug-in.

65

11.2 List of used libraries and tools

List of external libraries and tools used in this project follows.

SVNKit
Library for accessing Subversion repositories.
Version: 1.7.5
http://svnkit.com/

JGit
Library for accessing Git repositories.
Version: 2.1.0.201209190230
http://www.eclipse.org/jgit/

JSch
Library for accessing machines via SSH.
Version: 0.1.49
http://www. jcraft.com/jsch/

Apache Velocity
Library for code templates used for code generation.
Version: 1.7
http://velocity.apache.org/

Commons Math
Library for statistical computing used in evaluator and integrated generators.
Version: 3.1.1
http://commons.apache.org/proper/commons-math/

Apache log4j
Library for logging.
Version: 1.2.17
http://logging.apache.org/logdj/

Castor
Library for XML serialization and deserialization.
Version: 1.3.2
http://castor.codehaus.org/xml-framework.html

Commons Lang
Library required by the Castor.
Version: 3.1
http://commons.apache.org/proper/commons-lang/

Commons Logging
Library required by the Castor.
Version: 1.1.1
http://commons.apache.org/proper/commons-logging/
ini4j
Library for INT files serialization and deserialization.
Version: 0.5.2
http://ini4j.sourceforge.net/

66

http://svnkit.com/
http://www.eclipse.org/jgit/
http://www.jcraft.com/jsch/
http://velocity.apache.org/
http://commons.apache.org/proper/commons-math/
http://logging.apache.org/log4j/
http://castor.codehaus.org/xml-framework.html
http://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-logging/
http://ini4j.sourceforge.net/

JFreeChart
Library for graph generation.
Version: 1.0.14
http://www. jfree.org/jfreechart/

JCommon
Library required by the JFreeChart.
Version: 1.0.18
http://www. jfree.org/jcommon/

Saxon
XML processing library required by the Castor.
Version: 9.4
http://saxon.sourceforge.net/

Xerxes
XML processing library required by the Castor.
Version: 2.11.0
http://xerces.apache.org/xerces2-j/

JavaCC
Tool for grammar parser generation.
This tool is used during compilation only.
Version: 5.0.0
http://javacc. java.net/

JUnit
Tool and library for unit testing.
This library is used during compilation only.
http://junit.org/

Rscript
Tool for statistical computing and graph generation.
This tool has to be provided by the user and is not included in the project.
http://www.r-project.org/

67

http://www.jfree.org/jfreechart/
http://www.jfree.org/jcommon/
http://saxon.sourceforge.net/
http://xerces.apache.org/xerces2-j/
http://javacc.java.net/
http://junit.org/
http://www.r-project.org/

11.3 Development timeline and responsibilities

This section contains development timeline and responsibility information for each project

included in the SPL Tools.

11.3.1 Core project

All members of the development team participated on the Core project implementation.

Jiri Daniel

Work timeline for Jifi Daniel who left the project in the January 2013. He was responsible

for the Annotation Scanner and mapping of Java classes to XML in the Core project

] Month ‘ Functionality

‘ Additional notes

2012-05 | Initial layout of the repository
Java source code formatter for
Eclipse
Annotation representation initial implementation
XML mapping added support, standalone applica-
tion
2012-06 | Annotation scanner initial implementation
XML mapping fixes, improvements
Unit tests for XML mapping fixes, improvements
2012-07 | Annotation scanner fixes, improvements
2012-08 | Annotation scanner added support for usage from code
2012-09 | Annotation scanner fixes, improvements
Annotation representation fixes, improvements
XML mapping fixes, improvements
2012-10 | Annotation scanner fixes, improvements
XML mapping fixes, improvements
Logging added support
2012-11 | Logging fixes, improvements
Annotation scanner fixes, improvements
XML mapping fixes, improvements

Frantisek Haas

Work timeline for FrantisSek Haas who was responsible for access to remote repositories,
measurement execution and data storage.

] Month ‘ Functionality

‘ Additional notes

2012-05 | Prototyping
2012-06 | XML representation design
Execution support, SSH design
2012-07 | Execution support, SSH basic implementation

68

’ Month ‘ Functionality ‘ Additional notes
2012-08 | Git, Subversion access unauthenticated access
2012-09 | Sampler creation design
2012-10 | Sampler creation basic implementation
Execution support, SSH adapted to sampler
Data store basic implementation
2012-11 | Execution support, SSH rewritten to batch execution
Sampler creation compilation, output handling
Data store refactored
Git, Subversion access key authentication
File system and file utilites fixes, improvements
2012-12 | Git, Subversion access key authentication, host verify
Sampler creation improvements
SSH fixes, improvements
Data Store fixes, improvements
Command line interface improved
File system and file utilites fixes, improvements
2013-01 | Javadoc, documentation fixes, improvements
Integrated generators added
Fixes, improvements, tests fixes, improvements
INI configuration fixes, improvements
Git access fallback to system git
Execution support, SSH reconnect support
2013-02 | Javadoc, documentation
Fixes, tests, improvements
2013-03 | Javadoc, documentation
Fixes, tests, improvements

Jaroslav Kotré

Work timeline for Jaroslav Kotr¢ who was responsible for SPL grammar parser and annota-

tion representation.

| Month | Functionality | Additional notes
2012-05 | Parser initial implementation
Expander initial implementation
2012-06 | Parser context improvements
Parser improvements
Expander fixes
2012-07 | Parser improvements, fixes
2012-09 | Parser improvements
2012-10 | Parser extended grammar, improvements,
fixes
Expander extended grammar, improvements
2012-11 | Parser context improvements
Parser improvements, fixes, updated gram-
mar

69

’ Month ‘ Functionality ‘ Additional notes

Scanner fixes
2012-12 | Parser improvements
2013-01 | Parser improvement, fixes
Expander fixes
2013-02 | no work done (focused on the case study project)
2013-03 | Documentation ‘

Martin Lacina

Work timeline for Martin Lacina who was responsible for annotation evaluation and HTML
report creation in the Core project. Most of the improvements were made for better usage
from the Eclipse plug-in.

| Month | Functionality | Additional notes
2012-06 | Parser improvements
2012-07 | XML representation improvements
Parser improvements
2012-08 | Parser improvements
Global defined aliases added support
2012-09 | Annotation evaluation design and prototype
HTML report added support
Graph creation added support
Project R usage design and initial implementation
2012-10 | Measurement unique identification | added support
XML output added support
HTML output improvements
Scanner improvements
Graph creation improvements
Annotation information structure improvements (annotation location)
Annotation evaluation integrated to basic code
rewritten to use data storage ab-
straction
Execution support added support to skip already
measured measurements
Sampler creation improvements in code templates
Parser improvements
2012-11 | Annotation evaluation improvements, added configuration
INI configuration support design and initial implementation
Project R usage improvements
Parser improvements
Global defined aliases refactored
Graph creation fixes
HTML output fixes
2012-12 | Parser improvements
Sampler creation improvements
HTML output fixes

70

’ Month ‘ Functionality ‘ Additional notes

Data storage improvements
Logging improvements
Integrated generators improvements
Invoked execution added support
2013-01 | Invoked execution improvements
Logging improvements
Graph creation fixes
Annotation evaluation fixes, improvements
HTML output rewritten with XSLT support
Parser improvements
2013-02 | HTML output improvements
Documentation
2013-03 | Documentation

11.3.2 Case study project
The Case study project was lead by Jaroslav Kotr¢. Following table contains its timeline.

Frantisek Haas provided runtime for measurements and fixed discovered bugs in the Frame-
work with Martin Lacina.

Jaroslav Kotré

] Month ‘ Functionality ‘ Additional notes
2012-10 | Beginning chosen project JDOM, repository
briefly inspected
2012-11 | Configuration created
Generators created
2012-12 | Annotations added
2013-01 | Generators improved, fixed
Annotations added, commented, refactored, im-
proved
2013-02 | Annotations measured, improved
Documentation
2013-03 | Annotations measured, improved
Documentation

11.3.3 Eclipse plug-in project

The Eclipse plug-in project was lead by Martin Lacina. Jaroslav Kotr¢ participated in the
development.

Martin Lacina

71

’ Month ‘ Functionality

‘ Additional notes

2012-05 | Prototyping and design

2012-06 | Annotations overview initial implementation
Source code manipulation initial implementation

2012-07 | Project configuraiton dialog added support
Annotations overview improvements
Annotation editor added support

2012-08 | Xtext grammar and editors added support
Content assist added support
Project configuraiton dialog fixes, improvements
Annotations overview fixes, improvements
Annotation editor fixes, improvements

2012-09 | no work done (focused on formula evaluation in the core project)

2012-10 | Content assist fixes, improvements
Core integration fixes

2012-11 | Content assist fixes, improvements
Core integration fixes

2012-12 | Annotation editor fixes, improvements
Source code manipulation fixes, improvements
Project configuraiton dialog fixes, improvements
Evaluation results presentation initial implementation
Graph presentation added support
Evaluation execution added support

2013-01 | Project configuraiton editor fixes, improvements
Evaluation results presentation fixes, improvements
Evaluation execution fixes, improvements
Graph presentation added configuration dialog
Annotation editor fixes, improvements
Xtext grammar and editors fixes, improvements
Integrated generators added support to content assist
New file wizards added support

2013-02 | Evaluation results presentation fixes, improvements
Evaluation execution fixes, improvements

2013-03 | Documentation
Annotation editor fixes, improvements

Jaroslav Kotré

’ Month ‘ Functionality

‘ Additional notes

2012-07 | Project configuration dialog added validation support, improve-
ments, fixes
2012-08 | Xtext editors fixes
Content assist refactored
2012-09 | Syntax highlighting added support
2012-10 | Syntax highlighting completed
Project configuration dialog fixes
Xtext editors updated grammar

72

’ Month ‘ Functionality

‘ Additional notes

|

2012-11 | Xtext editors

updated grammar, refactored, im-

Project configuration editor

provements
Project configuration dialog fixes
2012-12 | Xtext editors fixes
Annotations overview improvements

created from Project configuration
dialog, improvements, fixes

2013-01 | INT configuration editor

Xtext editors

Project configuration editor

added support
updated grammar
imrovements, fixes

2013-02 | no work done (focused on the case study project)

2013-03 | INT configuration editor

Documentation

Project configuration editor

fixes
fixes

11.3.4 Hudson plug-in project

The Hudson plug-in project was lead by Jiti Daniel who created the initial implementation.

Martin Lacina took over this project in the half of December 2012 due to serious illness of
Jif{ Daniel. Martin Lacina is the responsible person for this project.

Jiri Daniel

’ Month ‘ Functionality

‘ Additional notes

2012-11 | Initial prototype

SPL execution through the com-
mand line

Martin Lacina

| Month | Functionality

\ Additional notes

2012-12 | Took over the project
Rewritten SPL execution

Java reflection

2013-01 | Build step configuration
SPL execution

Results presentation

improvements
fixes, improvements
added support

2013-03 | Documentation

	Introduction
	Main project overview
	Annotations
	Structure
	Parsing
	Formula expansion
	Info Object
	Scanning
	Patterns
	Class listing
	Class scanning

	Sampler Creation
	Getting complete Info
	Knowing what to create
	Sampler details
	Reflection
	Generator
	Method
	Example

	Sampler Code
	Class structure
	Dependency structure
	Compilation
	Archive

	Command execution
	File system organization

	Repository Access
	Interface
	Factory
	Git
	Subversion
	Extension

	Execution
	Overview
	Binary
	Initialization
	Structure
	Configuration
	Sampling
	Secure shell

	Store
	Measured data
	Identification
	Sample file format
	Storage
	Lock

	Evaluation
	Storage
	Evaluation directory format
	Lock

	Temporary
	Remote access

	Annotation Evaluation
	Main entry class and usage
	Evaluation process
	Logical operation evaluation details
	Comparison statistical evaluation details

	Generating output
	HTML output
	XML output
	Graph output

	Graph generation support
	Histogram support details
	Execution times graph support details
	Probability density plot support details
	The R Project invocation

	Using SPL as a library
	InvokedExecution class
	InvokedExecutionConfiguration class

	Eclipse Plug-in
	Source code repository
	Directory layout of the Eclipse project

	Requirements
	Compilation
	MWE2 Workflow related issues

	Package structure overview
	Binding to the Eclipse IDE
	Source code manipulation
	Parsing annotations from the source code
	Writing modifications to the source code

	Project configuration
	Basic GUI composition concepts
	Xtext usage
	Xtext embedded editors
	Content assist support
	Syntax coloring (highlighting) support

	SPL Annotations Overview
	Assisted annotation editing
	Annotation editor dialog
	Annotation editor component

	Invoking execution
	SPL Execution View
	Invocation implementation details

	Viewing results
	SPL Results Overview
	Navigation in the results
	The result details visual components
	Graph presentation

	SPL configuration editing
	Table editors
	Projects configuration editors

	INI configuration editing

	Hudson Plug-in
	Compilation from source
	Source code repository
	Directory layout of the project
	Dependencies
	Compilation
	Importing Plug-in to the Eclipse IDE

	Implementation details
	Basic information on Hudson plug-in development
	Description of classes
	HTTP access to the evaluation results

	Development
	What to improve
	List of used libraries and tools
	Development timeline and responsibilities
	Core project
	Case study project
	Eclipse plug-in project
	Hudson plug-in project

